
400万token新SOTA!英伟达UIUC联手:兼顾长短上下文顶尖性能
400万token新SOTA!英伟达UIUC联手:兼顾长短上下文顶尖性能来自英伟达和UIUC的华人团队提出一种高效训练方法,将LLM上下文长度从128K扩展至惊人的400万token SOTA纪录!基于Llama3.1-Instruct打造的UltraLong-8B模型,不仅在长上下文基准测试中表现卓越,还在标准任务中保持顶尖竞争力。
来自英伟达和UIUC的华人团队提出一种高效训练方法,将LLM上下文长度从128K扩展至惊人的400万token SOTA纪录!基于Llama3.1-Instruct打造的UltraLong-8B模型,不仅在长上下文基准测试中表现卓越,还在标准任务中保持顶尖竞争力。
根据去年2024年7月28日Meta公司在训练大模型(Llama 3)时使用“16384 个 英伟达H100 GPU 集群”的经验,该显卡在高负载、大规模集群运行环境下容易出现以下故障点:
7B大小的视频理解模型中的新SOTA,来了!
IBM 正式发布了其新一代开源大语言模型 Granite 3.1,这是一组轻量级、先进的开源基础模型,支持多语言、代码生成、推理和工具使用,能够在有限的计算资源上运行。这一系列模型具备 128K 的扩展上下文长度、嵌入模型、内置的幻觉检测功能以及性能的显著提升。
OpenAI谷歌天天刷流量,微软也坐不住了,推出最新小模型Phi-4。 参数量仅14B,MMLU性能就和Llama 3.3/ Qwen2.5等70B级别大模型坐一桌。
Llamacoder是Claude Artifacts的开源实现。 最大的亮点就是,左侧AI写代码,右侧实时渲染。 之前给大家推荐过一个基于Claude做的,Llamacoder是用了Meta 的 Llama 3.1 405B 作为底层语言模型。
刚刚,智谱把清影背后的图生视频模型CogVideoX-5B-I2V给开源了!(在线可玩) 一起开源的还有它的标注模型cogvlm2-llama3-caption。
Transformer 在深度学习领域取得巨大成功的关键是注意力机制。注意力机制让基于 Transformer 的模型关注与输入序列相关的部分,实现了更好的上下文理解。然而,注意力机制的缺点是计算开销大,会随输入规模而二次增长,Transformer 也因此难以处理非常长的文本。
Meta的开源大模型Llama 3在市场上遇冷,进一步加剧了大模型开源与闭源之争的关注热度。
Llama3.1系列模型的开源,真让大模型格局大震,指标上堪比最好的闭源模型比如GPT 4o和Claude3.5,让开源追赶闭源成为现实。