
迈向推理时代:900+篇参考文献揭示长链思维的前世今生,最全综述来了
迈向推理时代:900+篇参考文献揭示长链思维的前世今生,最全综述来了近年来,大模型(Large Language Models, LLMs)在数学、编程等复杂任务上取得突破,OpenAI-o1、DeepSeek-R1 等推理大模型(Reasoning Large Language Models,RLLMs)表现尤为亮眼。但它们为何如此强大呢?
近年来,大模型(Large Language Models, LLMs)在数学、编程等复杂任务上取得突破,OpenAI-o1、DeepSeek-R1 等推理大模型(Reasoning Large Language Models,RLLMs)表现尤为亮眼。但它们为何如此强大呢?
人类生成的数据推动了人工智能的惊人进步,但接下来会怎样呢?
移动GUI自动化智能体V-Droid采用「验证器驱动」架构,通过离散化动作空间并利用LLM评估候选动作,实现了高效决策。在AndroidWorld等多个基准测试中任务成功率分别达到59.5%、38.3%和49%,决策延迟仅0.7秒,接近实时响应。
近年来,大语言模型(LLMs)的对齐研究成为人工智能领域的核心挑战之一,而偏好数据集的质量直接决定了对齐的效果。无论是通过人类反馈的强化学习(RLHF),还是基于「RL-Free」的各类直接偏好优化方法(例如 DPO),都离不开高质量偏好数据集的构建。
世界模型领域最新进展,要比拼“世界生成”了。
基于规则的强化学习(RL/RFT)已成为替代 SFT 的高效方案,仅需少量样本即可提升模型在特定任务中的表现。
一个7B奖励模型搞定全学科,大模型强化学习不止数学和代码。
在大模型推理能力提升的探索中,工具使用一直是克服语言模型计算局限性的关键路径。不过,当今的大模型在使用工具方面还存在一些局限,比如预先确定了工具的使用模式、限制了对最优策略的探索、实现透明度不足等。
由于 DeepSeek R1 和 OpenAI o1 等推理模型(LRM,Large Reasoning Model)带来了新的 post-training scaling law,强化学习(RL,Reinforcement Learning)成为了大语言模型能力提升的新引擎。然而,针对大语言模型的大规模强化学习训练门槛一直很高:
你是否注意过人类观察世界的独特方式?