
单张照片生成360°3D场景,支持灵活视角漫游|人大&北师大&字节
单张照片生成360°3D场景,支持灵活视角漫游|人大&北师大&字节从单张图像生成灵活视角3D场景的技术来了,在考古保护、自主导航等直接获取3D数据成本高昂或不可行的领域具有重要应用价值。
从单张图像生成灵活视角3D场景的技术来了,在考古保护、自主导航等直接获取3D数据成本高昂或不可行的领域具有重要应用价值。
强化学习提升了 LLM 各方面的能力,而强化学习本身也在进化。
训练狗时不仅要让它知对错,还要给予差异较大的、不同的奖励诱导,设计 RLHF 的奖励模型时也是一样。
虽然大多数强化学习(RL)方法都在使用浅层多层感知器(MLP),但普林斯顿大学和华沙理工的新研究表明,将对比 RL(CRL)扩展到 1000 层可以显著提高性能,在各种机器人任务中,性能可以提高最多 50 倍。
3月18日,美国哥伦比亚特区巡回上诉法院就科学家Stephen Thaler(史蒂芬·泰勒博士,下称泰勒)诉Shira Perlmutter(美国版权局注册官及美国版权办公室主任)以及美国版权局作出标志性判决,认定所有受版权保护的作品必须首先由人类创作。尽管AI技术的发展使得非人类创作的作品越来越多,但根据现有的法律框架,这些作品无法获得版权保护。
单视角三维场景重建一直是计算机视觉领域中的核心挑战之一,尤其在捕捉高保真室外场景细节时,如何确保结构一致性和几何精度显得尤为困难。
一个超越DeepSeek GRPO的关键RL算法出现了!这个算法名为DAPO,字节、清华AIR联合实验室SIA Lab出品,现已开源。禹棋赢,01年生,本科毕业于哈工大,直博进入清华AIR,目前博士三年级在读。去年年中,他以研究实习生的身份加入字节首次推出的「Top Seed人才计划」。
如果你已经读过我们上一篇经典长文《DeepSearch/DeepResearch 的设计与实现》,那么不妨再深挖一些能大幅提升回答质量的细节。这次,我们将重点关注两个细节:
DeepSeek 提出的 GRPO 可以极大提升 LLM 的强化学习效率,不过其论文中似乎还缺少一些关键细节,让人难以复现出大规模和工业级的强化学习系统。
大语言模型(LLM)在推理领域的最新成果表明了通过扩展测试时计算来提高推理能力的潜力,比如 OpenAI 的 o1 系列。