
递归语言模型登场!MIT华人新作爆火,扩展模型上下文便宜又简单
递归语言模型登场!MIT华人新作爆火,扩展模型上下文便宜又简单目前,所有主流 LLM 都有一个固定的上下文窗口(如 200k, 1M tokens)。一旦输入超过这个限制,模型就无法处理。 即使在窗口内,当上下文变得非常长时,模型的性能也会急剧下降,这种现象被称为「上下文腐烂」(Context Rot):模型会「忘记」开头的信息,或者整体推理能力下降。
目前,所有主流 LLM 都有一个固定的上下文窗口(如 200k, 1M tokens)。一旦输入超过这个限制,模型就无法处理。 即使在窗口内,当上下文变得非常长时,模型的性能也会急剧下降,这种现象被称为「上下文腐烂」(Context Rot):模型会「忘记」开头的信息,或者整体推理能力下降。
这几天,关于「微调已死」的言论吸引了学术圈的广泛关注。一篇来自斯坦福大学、SambaNova、UC 伯克利的论文提出了一种名为 Agentic Context Engineering(智能体 / 主动式上下文工程)的技术,让语言模型无需微调也能实现自我提升!
调模型不如“管上下文”。这篇文章基于 ACE(Agentic Context Engineering),把系统提示、运行记忆和证据做成可演化的 playbook,用“生成—反思—策展”三角色加差分更新,规避简化偏置与上下文塌缩。在 AppWorld 与金融基准上,ACE 相较强基线平均提升约 +10.6% 与 +8.6%,适配时延降至约 1/6(-86.9%),且在无标注监督场景依然有效。
Supermemory 已获得由 Susa Ventures、Browder Capital 和 SF1.vc 领投的 260 万美元种子轮融资。此轮融资还包括 Cloudflare 的 Knecht、谷歌人工智能负责人 Jeff Dean、DeepMind 产品经理 Logan Kilpatrick、Sentry 创始人 David Cramer 以及来自 OpenAI、
最近 flowith 推出了全新画布,交互形态全新升级,现在 AI 生成的任意内容,都可以被很方便的右键点击节点,存入任意知识库,后续工作都可以调用。说实话,flowith 是一款上手门槛比较高的产品,它不像一般对话式的 ChatBot 那样简单,
上下文学习”(In-Context Learning,ICL),是大模型不需要微调(fine-tuning),仅通过分析在提示词中给出的几个范例,就能解决当前任务的能力。您可能已经对这个场景再熟悉不过了:您在提示词里扔进去几个例子,然后,哇!大模型似乎瞬间就学会了一项新技能,表现得像个天才。
智东西9月15日报道,今天,阿里巴巴通义实验室推出了FunAudio-ASR端到端语音识别大模型。这款模型通过创新的Context模块,针对性优化了“幻觉”、“串语种”等关键问题,在高噪声的场景下,幻觉率从78.5%下降至10.7%,下降幅度接近70%。
谷歌回归搜索老本行,这一次,它要让 AI 能像人一样「看见」网页。 这是谷歌前不久在 Gemini API 全面上线的 URL Context 功能(5 月 28 日已在 Google AI Studio 中推出),它使 Gemini 模型能够访问并处理来自 URL 的内容,包括网页、PDF 和图像。
AI生成的人物和场景转头就变样,缺乏一致性? nonono,这回不一样了,康康下面的demo! 游戏地图:《塞尔达传说》中的绿色田野
OpenAI的GPT-5因大幅降低AI幻觉而被批"变蠢",输出呆板创造力减弱,反映出幻觉降低限制模型灵活性。对话嘉宾甄焱鲲分析幻觉本质无法根除,需辩证看待,并探讨类型分5类、缓解方法如In-Context-Learning及RAG,影响企业应用场景的容忍度与决策,强调未来模型或通过世界模型深化理解。