
微软已为Agent悄然调转船头,当大厂都在卷“通用Agent”
微软已为Agent悄然调转船头,当大厂都在卷“通用Agent”您有没有这样的体验?一天的工作里,您可能用GPTo3写了个方案,然后切换到Cursor或者Trae里写代码,接着又打开Notion或者飞书整理文档。每个工具都挺聪明,但它们彼此之间就像生活在平行宇宙——写方案的GPT不知道您后来写了什么代码,写代码的Cursor也不清楚您的整体规划是什么。
您有没有这样的体验?一天的工作里,您可能用GPTo3写了个方案,然后切换到Cursor或者Trae里写代码,接着又打开Notion或者飞书整理文档。每个工具都挺聪明,但它们彼此之间就像生活在平行宇宙——写方案的GPT不知道您后来写了什么代码,写代码的Cursor也不清楚您的整体规划是什么。
当前数学领域的数据生成方法常常局限于对单个问题进行改写或变换,好比是让学生反复做同一道题的变种,却忽略了数学题目之间内在的关联性。
编程智能体确实厉害!Transformer作者Llion Jones初创公司,专门收集了NP难题并测试了AI智能体,结果竟在上千人竞赛中排第 21!这意味着,它已经比绝大多数人写得好了。
当前,Agentic RAG(Retrieval-Augmented Generation)正逐步成为大型语言模型访问外部知识的关键路径。但在真实实践中,搜索智能体的强化学习训练并未展现出预期的稳定优势。一方面,部分方法优化的目标与真实下游需求存在偏离,另一方面,搜索器与生成器间的耦合也影响了泛化与部署效率。
和那些看着酷但鸡肋的 AI,可不一样,它是真的管用。 在不久前结束的 Google I/O 上,Google 悄咪咪地在安卓和 iOS 同时上线了一款“旧”app——NotebookLM。发布当日,不到 24 小时,它就夺得苹果 App Store 中生产工具类别的第二名
在企业系统和科学研究中普遍存在、结构复杂的关系型数据库(Relational DataBase, RDB)场景中,基础模型的探索仍处于早期阶段。
越通用,就越World Models。 我们知道,大模型技术爆发的原点可能在谷歌一篇名为《Attention is All You Need》的论文上。
Transformer已满8岁,革命性论文《Attention Is All You Need》被引超18万次,掀起生成式AI革命。Transformer催生了ChatGPT、Gemini、Claude等诸多前沿产品。更重要的是,它让人类真正跨入了生成式AI时代。
据 The Information 报道,有消息称 Meta 将以 148 亿美元收购 Scale AI 49% 的股权,而作为交易的一部分,Scale AI CEO Alexandr Wang 将在 Meta 内部担任高级职位,领导一个新的「超级智能(Superintelligence)」实验室。
6月10日,AI制药上市公司Recursion宣布裁员20%,就在不久前,公司称要精简部分药物管线,在研发上更加聚焦。