看似万能的 AI,其实比你想的更脆弱和邪恶
看似万能的 AI,其实比你想的更脆弱和邪恶十月,《纽约时报》发表了题为《The A.I. Prompt That Could End the World》(《那个可能终结世界的 AI 提示词》)的文章。作者 Stephen Witt 采访了多位业内人士:有 AI 先驱,图灵奖获奖者 Yoshua Bengio;以越狱测试著称的 Leonard Tang;以及专门研究模型欺骗的 Marius Hobbhahn。
十月,《纽约时报》发表了题为《The A.I. Prompt That Could End the World》(《那个可能终结世界的 AI 提示词》)的文章。作者 Stephen Witt 采访了多位业内人士:有 AI 先驱,图灵奖获奖者 Yoshua Bengio;以越狱测试著称的 Leonard Tang;以及专门研究模型欺骗的 Marius Hobbhahn。
近两年,AI笔记成为AI应用落地的重点方向之一。随着大模型能力不断升级,AI笔记不再只是帮用户“写下东西”,而是试图理解、整理、提炼、甚至帮用户“思考”所记录下的内容。市场上AI笔记产品繁多,既有印象笔记、Notion AI这样加入AI能力的传统笔记产品,也有闪念贝壳、喵记多这样的AI原生笔记产品,甚至还有飞书文档这样将AI笔记功能嵌入办公套件的综合性产品。
刚刚,计算机科学家 Yoshua Bengio 创造了新的历史,成为 Google Scholar 上首个引用量超过 100 万的人!打个直观的比方,如果我们将每一篇引用论文打印成册(假设平均厚度为 1 毫米),然后将它们垂直堆叠起来,这座由知识构成的纸塔将高达 1000 米。这是什么概念?它将轻松超越目前的世界最高建筑,即 828 米的迪拜哈利法塔。
长期以来,扩散模型的训练通常依赖由变分自编码器(VAE)构建的低维潜空间表示。然而,VAE 的潜空间表征能力有限,难以有效支撑感知理解等核心视觉任务,同时「VAE + Diffusion」的范式在训练
随着多模态大模型的不断演进,指令引导的图像编辑(Instruction-guided Image Editing)技术取得了显著进展。然而,现有模型在遵循复杂、精细的文本指令方面仍面临巨大挑战,往往需要用户进行多次尝试和手动筛选,难以实现稳定、高质量的「一步到位」式编辑。
年初的 DeepSeek-R1,带来了大模型强化学习(RL)的火爆。无论是数学推理、工具调用,还是多智能体协作,GRPO(Group Relative Policy Optimization)都成了最常见的 RL 算法。
近日,范鹤鹤(浙江大学)、杨易(浙江大学)、Mohan Kankanhalli(新加坡国立大学)和吴飞(浙江大学)四位老师提出了一种具有划时代意义的神经网络基础操作——Translution。 该研究认为,神经网络对某种类型数据建模的本质是:
OpenAI前研究副总裁Liam Fedus与DeepMind材料科学领军者Ekin Cubuk共创Periodic Labs,以一轮高达3亿美元的种子融资走出隐身模式,震惊硅谷。然而,曾给出祝福的前东家OpenAI,并未参与本轮投资。
生成式 AI 正在重写 3D 内容的生产流程:从“DCC 工具 + 外包”的线性供给,演进到“资产规模化生成 + 管线可用”的指数供给模式。过去五年,技术范式经历了从实时体积渲染,NeRF,到Score Distillation,3D扩散的快速迭代;需求侧则由游戏与影视,向3D 打印、电商样机、数字人、教育培训、以及AR/VR等长尾场景外溢。
给歌曲做MV,现在已经是一个AI就能搞定的时代了。 来,请欣赏用AI给神曲《八方来财》做的东方赛博朋克MV: