情人节最硬核“Kiss”!中国AI突破300年亲吻数难题,连刷多维度纪录
情人节最硬核“Kiss”!中国AI突破300年亲吻数难题,连刷多维度纪录来自上海科学智能研究院(上智院)、北京大学、复旦大学的联合团队,提出了一套名为PackingStar的强化学习系统,一口气刷新了25-31连续7个维度的世界纪录。
来自上海科学智能研究院(上智院)、北京大学、复旦大学的联合团队,提出了一套名为PackingStar的强化学习系统,一口气刷新了25-31连续7个维度的世界纪录。
LaST₀团队 投稿 量子位 | 公众号 QbitAI 近日,至简动力、北京大学、香港中文大学、北京人形机器人创新中心提出了一种名为LaST₀的全新隐空间推理VLA模型,在基于Transformer混
近日,北京大学朱毅鑫教授课题组、北京大学毕彦超教授课题组和山西医科大学第一医院王效春团队通过结合 AI 模型和大脑损伤患者的数据,发现语言其实是一副无形的智能眼镜,时刻在悄悄修饰着我们看到的世界。我们可能以为视觉就是眼睛看到什么就是什么,但是这项成果说明了视觉从来都不是孤立的。事实上,当我们在看图片的时候,其实不只是在看,而是在进行被语言调制过的看。
让静态3D模型「动起来」一直是图形学界的难题:物理模拟太慢,生成模型又不讲「物理基本法」。近日,北京大学团队提出DragMesh,通过「语义-几何解耦」范式与双四元数VAE,成功将核心生成模块的算力消耗降低至SOTA模型的1/10,同时将运动轴预测误差降低了10倍。
蚂蚁健康与北京大学人民医院王俊院士团队历时6个多月,联合十余位胸外科医生共同打磨,发布了全球首个大模型专病循证能力的评测框架—— GAPS(Grounding, Adequacy, Perturbation, Safety),及其配套评测集 GAPS-NSCLC-preview。
北京大学团队提出了一种新的视觉语义场景补全方法HD²-SSC,用于从多视角图像重建三维语义场景。该方法通过高维度语义解耦和高密度占用优化,解决了现有技术中二维输入与三维输出之间的维度差异,以及人工标注与真实场景密度差异的问题,从而实现更准确的语义场景补全。
近日,北京大学团队提出一个直接基于已有预训练模型进行极低比特量化的通用框架——Fairy2i。该框架通过广泛线性表示将实数模型无损转换为复数形式,再结合相位感知量化与递归残差量化,实现了在仅2比特的情况下,性能接近全精度模型的突破性进展。
近日,由趣丸科技与北京大学软件工程国家工程研究中心共同发表的《Detecting Emotional Dynamic Trajectories: An Evaluation Framework for Emotional Support in Language Models(检测情感动态轨迹:大语言模型情感支持的评估框架)》论文,获 AAAI 2026 录用。
近日,腾讯优图实验室联合华东理工大学、北京大学等研究团队在A生成图像检测(AI-Generated Image Detection)泛化问题上展开研究,提出Dual Data Alignment(双重数据对齐,DDA)方法,从数据层面系统性抑制“偏差特征”,显著提升检测器在跨模型、跨数据域场景下的泛化能力。
具身智能的「ChatGPT时刻」还没到,机器人的「幻觉」却先来了?在需要几十步操作的长序列任务中,现有的VLA模型经常「假装在干活」,误以为任务完成。针对这一痛点,北京大学团队提出自进化VLA框架EvoVLA。该模型利用Gemini生成「硬负样本」进行对比学习,配合几何探索与长程记忆,在复杂任务基准Discoverse-L上将成功率提升了10.2%,并将幻觉率从38.5%大幅降至14.8%。