
DeepSeek-R1 是怎么训练的|深度拆解
DeepSeek-R1 是怎么训练的|深度拆解昨天晚上,DeepSeek 又开源了 DeepSeek-R1 模型(后简称 R1),再次炸翻了中美互联网: R1 遵循 MIT License,允许用户通过蒸馏技术借助 R1 训练其他模型。 R1 上线 API,对用户开放思维链输出 R1 在数学、代码、自然语言推理等任务上,性能比肩 OpenAI o1 正式版,小模型则超越 OpenAI o1-mini
昨天晚上,DeepSeek 又开源了 DeepSeek-R1 模型(后简称 R1),再次炸翻了中美互联网: R1 遵循 MIT License,允许用户通过蒸馏技术借助 R1 训练其他模型。 R1 上线 API,对用户开放思维链输出 R1 在数学、代码、自然语言推理等任务上,性能比肩 OpenAI o1 正式版,小模型则超越 OpenAI o1-mini
最近几个月,从各路媒体、AI 社区到广大网民都在关注 OpenAI 下一代大模型「GPT-5」的进展。
还在为部署RAG系统的庞大体积和高性能门槛困扰吗?港大黄超教授团队最新推出的轻量级MiniRAG框架很好地解决了这一问题。通过优化架构设计,MiniRAG使得1.5B级别的小模型也能高效完成RAG任务,为端侧AI部署提供了更多可能性。
小模型也能击败o1?微软全华人团队提出rStar-Math算法,三大革命性技术突破,不仅让SLM在数学推理能力上刷新SOTA,更是挤进了全美20%顶尖高中生榜单。
放弃AGI,转向更好落地的小模型,李开复要带零一万物做“能赚钱的创新”。
大厂为什么追求大模型? 昨天有提到,为什么要研究语言模型。
a16z 合伙人 Jennifer Li 最近分享了她对生成式 AI 的最新见解,特别提到了设备端运行的小型模型在未来的重要性。
为了优化小模型的提示词,我们不得不求助于计算成本高昂的大模型。这种依赖不仅增加了开发成本,还限制了小模型的应用场景。
英伟达新品掀起边缘AI开发板大战,也为中国企业在边缘AI领域的发展提供了机遇。 前几篇文章,我们不断探讨小模型(SLM)在端侧和边缘侧的崛起。现在,边缘侧小模型已然成为不可忽视的发展趋势。
微软下一代14B小模型Phi-4出世了!仅用了40%合成数据,在数学性能上击败了GPT-4o,最新36页技术报告出炉。