
AI将受困于人类数据
AI将受困于人类数据AI迈入经验时代,2025 年 6 月 6 日,第七届北京智源大会在北京正式开幕,强化学习奠基人、2025年图灵奖得主、加拿大计算机科学家Richard S. Sutton以“欢迎来到经验时代”为题发表主旨演讲
AI迈入经验时代,2025 年 6 月 6 日,第七届北京智源大会在北京正式开幕,强化学习奠基人、2025年图灵奖得主、加拿大计算机科学家Richard S. Sutton以“欢迎来到经验时代”为题发表主旨演讲
近年来,链式推理和强化学习已经被广泛应用于大语言模型,让大语言模型的推理能力得到了显著提升。
当前,Agentic RAG(Retrieval-Augmented Generation)正逐步成为大型语言模型访问外部知识的关键路径。但在真实实践中,搜索智能体的强化学习训练并未展现出预期的稳定优势。一方面,部分方法优化的目标与真实下游需求存在偏离,另一方面,搜索器与生成器间的耦合也影响了泛化与部署效率。
Era of Experience 这篇文章中提到:如果要实现 AGI, 构建能完成复杂任务的通用 agent,必须借助“经验”这一媒介,这里的“经验”就是指强化学习过程中模型和 agent 积累的、人类数据集中不存在的高质量数据。
强化学习·RL范式尝试为LLMs应用于广泛的Agentic AI甚至构建AGI打开了一扇“深度推理”的大门,而RL是否是唯一且work的一扇门,先按下不表(不作为今天跟大家唠的重点),至少目前看来,随着o1/o3/r1/qwq..等一众语言推理模型的快速发展,正推动着LLMs和Agentic AI在不同领域的价值与作用,
谁说强化学习只能是蛋糕上的樱桃,说不定,它也可以是整个蛋糕呢?
SemiAnalysis全新硬核爆料,意外揭秘了OpenAI全新模型的秘密?据悉,新模型介于GPT-4.1和GPT-4.5之间,而下一代推理模型o4将基于GPT-4.1训练,而背后最大功臣,就是强化学习。
为什么语言模型很成功,视频模型还是那么弱?
大模型目前的主导地位只是暂时的,在未来五年甚至十年内都不会是技术前沿。 这是新晋图灵奖得主、强化学习之父Richard Sutton对未来的最新预测。
Time-R1通过三阶段强化学习提升模型的时间推理能力,其核心是动态奖励机制,根据任务难度和训练进程调整奖励,引导模型逐步提升性能,最终使3B小模型实现全面时间推理能力,超越671B模型。