刚刚,字节开源Seed-OSS-36B模型,512k上下文
刚刚,字节开源Seed-OSS-36B模型,512k上下文开源赛道也是热闹了起来。 就在深夜,字节跳动 Seed 团队正式发布并开源了 Seed-OSS 系列模型,包含三个版本: Seed-OSS-36B-Base(含合成数据) Seed-OSS-36B-Base(不含合成数据) Seed-OSS-36B-Instruct(指令微调版)
开源赛道也是热闹了起来。 就在深夜,字节跳动 Seed 团队正式发布并开源了 Seed-OSS 系列模型,包含三个版本: Seed-OSS-36B-Base(含合成数据) Seed-OSS-36B-Base(不含合成数据) Seed-OSS-36B-Instruct(指令微调版)
谷歌开源Gemma 3 270M闪亮登场!只需几分钟即可完成微调,指令遵循和文本结构化能力更是惊艳,性能超越Qwen 2.5同级模型。
首个开源多模态Deep Research Agent来了。整合了网页浏览、图像搜索、代码解释器、内部 OCR 等多种工具,通过全自动流程生成高质量推理轨迹,并用冷启动微调和强化学习优化决策,使模型在任务中能自主选择合适的工具组合和推理路径。
近年来,强化学习(RL)在大型语言模型(LLM)的微调过程中,尤其是在推理能力提升方面,取得了显著的成效。传统的强化学习方法,如近端策略优化(Proximal Policy Optimization,PPO)及其变种,包括组相对策略优化(Group Relative Policy Optimization,GRPO),在处理复杂推理任务时表现出了强大的潜力。
仅凭少量后训练微调,机器人就能完全自主、连续不断地完成床铺整理任务。 而它的每一步思考与动作实时投放在大屏幕上。
在语言模型领域,长思维链监督微调(Long-CoT SFT)与强化学习(RL)的组合堪称黄金搭档 —— 先让模型学习思考模式,再用奖励机制优化输出,性能通常能实现叠加提升。
近期,随着OpenAI-o1/o3和Deepseek-R1的成功,基于强化学习的微调方法(R1-Style)在AI领域引起广泛关注。这些方法在数学推理和代码智能方面展现出色表现,但在通用多模态数据上的应用研究仍有待深入。
7 月 26 日,在 WAIC 2025 世界人工智能大会上,中国移动九天人工智能研究院全面开源九天结构化数据大模型 “数据 - 模型 - 测评” 三位一体的完整模型体系,包括了结构化数据体系、TReB 标准化测评框架、支持微调及推理全流程模型。
近年来,OpenAI o1 和 DeepSeek-R1 等模型的成功证明了强化学习能够显著提升语言模型的推理能力。通过基于结果的奖励机制,强化学习使模型能够发展出可泛化的推理策略,在复杂问题上取得了监督微调难以企及的进展。
只需一次指令微调,即可让普通大模型变身“全能专家天团”?