
视频扩散模型新突破!清华腾讯联合实现高保真3D生成,告别多视图依赖
视频扩散模型新突破!清华腾讯联合实现高保真3D生成,告别多视图依赖三维场景是构建世界模型、具身智能等前沿科技的关键环节之一。
三维场景是构建世界模型、具身智能等前沿科技的关键环节之一。
扩散模型风头正盛,何恺明最新论文也与此相关。 研究的是如何把扩散模型和表征学习联系起来—— 给扩散模型加上“整理收纳”功能,使其内部特征更加有序,从而生成效果更加自然逼真的图片。
本文介绍的工作由中国人民大学高瓴人工智能学院李崇轩、文继荣教授团队与蚂蚁集团共同完成。朱峰琪、王榕甄、聂燊是中国人民大学高瓴人工智能学院的博士生,导师为李崇轩副教授。
在人工智能领域,跨模态生成(如文本到图像、图像到文本)一直是技术发展的前沿方向。现有方法如扩散模型(Diffusion Models)和流匹配(Flow Matching)虽取得了显著进展,但仍面临依赖噪声分布、复杂条件机制等挑战。
上个月 21 号,Google I/O 2025 开发者大会可说是吸睛无数,各种 AI 模型、技术、工具、服务、应用让人目不暇接。在这其中,Gemini Diffusion 绝对算是最让人兴奋的进步之一。从名字看得出来,这是一个采用了扩散模型的 AI 模型,而这个模型却并非我们通常看到的扩散式视觉生成模型,而是一个地地道道的语言模型!
近段时间,已经出现了不少基于扩散模型的语言模型,而现在,基于扩散模型的视觉-语言模型(VLM)也来了,即能够联合处理视觉和文本信息的模型。今天我们介绍的这个名叫 LaViDa,继承了扩散语言模型高速且可控的优点,并在实验中取得了相当不错的表现。
当状态空间模型遇上扩散模型,对世界模型意味着什么?
近日,NVIDIA 联合香港大学、MIT 等机构重磅推出 Fast-dLLM,以无需训练的即插即用加速方案,实现了推理速度的突破!通过创新的技术组合,在不依赖重新训练模型的前提下,该工作为扩散模型的推理加速带来了突破性进展。本文将结合具体技术细节与实验数据,解析其核心优势。
普林斯顿大学与字节 Seed、北大、清华等研究团队合作提出了 MMaDA(Multimodal Large Diffusion Language Models),作为首个系统性探索扩散架构的多模态基础模型,MMaDA 通过三项核心技术突破,成功实现了文本推理、多模态理解与图像生成的统一建模。
谷歌又放新大招了,将图像生成常用的“扩散技术”引入语言模型,12秒能生成1万tokens。