
李飞飞、吴佳俊团队新作:不需要卷积和GAN,更好的图像tokenizer来了
李飞飞、吴佳俊团队新作:不需要卷积和GAN,更好的图像tokenizer来了当我们看到一张猫咪照片时,大脑自然就能识别「这是一只猫」。但对计算机来说,它看到的是一个巨大的数字矩阵 —— 假设是一张 1000×1000 像素的彩色图片,实际上是一个包含 300 万个数字的数据集(1000×1000×3 个颜色通道)。每个数字代表一个像素点的颜色深浅,从 0 到 255。
当我们看到一张猫咪照片时,大脑自然就能识别「这是一只猫」。但对计算机来说,它看到的是一个巨大的数字矩阵 —— 假设是一张 1000×1000 像素的彩色图片,实际上是一个包含 300 万个数字的数据集(1000×1000×3 个颜色通道)。每个数字代表一个像素点的颜色深浅,从 0 到 255。
AI说:“我懂你”,然后转头写进大数据。
当今世界,人们都在谈论生成式人工智能。全世界都知道所有最新的GenAI概念和术语——因此,你会比以往听到更多这样的话:“这个词不等于token”。全世界都开始实施至少一个或两个GenAI用例,当然——我引用它的意思是“改变生活”。
在用Cursor等AI工具编程的同学们,有没有发现,你原本想让AI帮你解决问题,但AI老是让你自己去操作。
文本到图像(Text-to-Image, T2I)生成任务近年来取得了飞速进展,其中以扩散模型(如 Stable Diffusion、DiT 等)和自回归(AR)模型为代表的方法取得了显著成果。然而,这些主流的生成模型通常依赖于超大规模的数据集和巨大的参数量,导致计算成本高昂、落地困难,难以高效地应用于实际生产环境。
简单来说,它改变了 MCP 的数据传输方式,比如说,以前你在跟一个人用MCP的传输人方式打电话需要一直保持在线(SSE需要长连接),新的方式你可以随时发消息等回复(普通的HTTP请求,可以流式传输)。
美国大学生已经提前开始为AI打工了
通过收集六名志愿者一周的多模态生活数据,研究人员构建了300小时的第一视角数据集EgoLife,旨在开发一款基于智能眼镜的AI生活助手。项目提出了EgoButler系统,包含EgoGPT和EgoRAG两个模块,分别用于视频理解与长时记忆问答,助力AI深入理解日常生活并提供个性化帮助。
我是 Dify 产品团队的 Yawen。今天,我们很高兴地宣布发布 Dify v1.1.0,并推出了以“元数据”作为知识过滤器的新功能。通过利用自定义的元数据属性,元数据过滤能够提升知识库中相关数据的检索效率和准确度。过去,用户只能在庞大的数据集中进行搜索,无法根据特定需求进行筛选或控制访问,难以快速锁定最相关的信息。、
今年年初,OpenAI 上线 Deep Research,开启了智能体又一新阶段,其能根据用户需求自主进行网络信息检索、整合多源信息、深度分析数据,并最终为用户提供全面深入的解答。