
CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务
CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务来自香港科技大学,清华大学的研究者提出了「GenN2N」,一个统一的生成式 NeRF-to-NeRF 转换框架,适用于各种 NeRF 转换任务,例如文字驱动的 NeRF 编辑、着色、超分辨率、修复等,性能均表现极其出色!
来自香港科技大学,清华大学的研究者提出了「GenN2N」,一个统一的生成式 NeRF-to-NeRF 转换框架,适用于各种 NeRF 转换任务,例如文字驱动的 NeRF 编辑、着色、超分辨率、修复等,性能均表现极其出色!
Karger 算法可以在时间为 O (m log^3n) 的图中找到一个最小割点,他们将这个时间称之为近线性时间,意思是线性乘以一个多对数因子
以神经网络为基础的深度学习技术已经在诸多应用领域取得了有效成果
风格化图像生成,也常称为风格迁移,其目标是生成与参考图像风格一致的图像。
近,来自澳大利亚蒙纳士大学、蚂蚁集团、IBM 研究院等机构的研究人员探索了模型重编程 (model reprogramming) 在大语言模型 (LLMs) 上应用,并提出了一个全新的视角
近日,来自佐治亚大学、新泽西理工学院、弗吉尼亚大学、维克森林大学、和腾讯 AI Lab 的研究者联合发布了解释性技术在大语言模型(LLM)上的可用性综述,提出了 「Usable XAI」 的概念,并探讨了 10 种在大模型时代提高 XAI 实际应用价值的策略。
大语言模型潜力被激发—— 无需训练大语言模型就能实现高精度时序预测,超越一切传统时序模型。
大模型在今年的落地,除了对用 AI 对已有业务进行改造和提效外,算力和推理的优化,可能是另外一项重要的实践了。这在腾讯的两个完全不同的业务上有着明显的体现。
模仿人类阅读过程,先分段摘要再回忆,谷歌新框架ReadAgent在三个长文档阅读理解数据集上取得了更强的性能,有效上下文提升了3-20倍。
特工少女说:顾洲洪老师是复旦大学数据科学博士,最近新发表了一篇《AgentGroupChat: An Interactive Group Chat Simulacra For Better Eliciting Emergent Behavior》的论文,此文是顾老师自己对论文的解读,经授权转载自顾老师的知乎,点击文末阅读原文可跳转原文链接,学术交流可加文末顾老师的微信。