
平均准确率达96.4%,中山大学&重庆大学开发基于Transformer的单细胞注释方法
平均准确率达96.4%,中山大学&重庆大学开发基于Transformer的单细胞注释方法使用测序 (scATAC-seq) 技术对转座酶可及的染色质进行单细胞测定,可在单细胞分辨率下深入了解基因调控和表观遗传异质性,但由于数据的高维性和极度稀疏性,scATAC-seq 的细胞注释仍然具有挑战性。现有的细胞注释方法大多集中在细胞峰矩阵上,而没有充分利用底层的基因组序列。
使用测序 (scATAC-seq) 技术对转座酶可及的染色质进行单细胞测定,可在单细胞分辨率下深入了解基因调控和表观遗传异质性,但由于数据的高维性和极度稀疏性,scATAC-seq 的细胞注释仍然具有挑战性。现有的细胞注释方法大多集中在细胞峰矩阵上,而没有充分利用底层的基因组序列。
万万没想到,与任务无直接关联的多模态数据也能提升Transformer模型性能。
探索视频理解的新境界,Mamba 模型引领计算机视觉研究新潮流!传统架构的局限已被打破,状态空间模型 Mamba 以其在长序列处理上的独特优势,为视频理解领域带来了革命性的变革。
想象一下,你仅需要输入一段简单的文本描述,就可以生成对应的 3D 数字人动画的骨骼动作。而以往,这通常需要昂贵的动作捕捉设备或是专业的动画师逐帧绘制。这些骨骼动作可以进一步的用于游戏开发,影视制作,或者虚拟现实应用。来自阿尔伯塔大学的研究团队提出的新一代 Text2Motion 框架,MoMask,正在让这一切变得可能。
抛弃传统方法,只采用Transformer来解码真实场景!
在人物说话的过程中,每一个细微的动作和表情都可以表达情感,都能向观众传达出无声的信息,也是影响生成结果真实性的关键因素。
虽然大型语言模型(LLM)在各种常见的自然语言处理任务中展现出了优异的性能,但随之而来的幻觉,也揭示了模型在真实性和透明度上仍然存在问题。
在人物说话的过程中,每一个细微的动作和表情都可以表达情感,都能向观众传达出无声的信息,也是影响生成结果真实性的关键因素。
拖动式图像编辑是一种新型的、用户交互式的图像编辑方法。
91行代码、1056个token,GPT-4化身黑客搞破坏!