
清华LeapLab开源cooragent框架:一句话构建您的本地智能体服务群
清华LeapLab开源cooragent框架:一句话构建您的本地智能体服务群刚刚,清华大模型团队 LeapLab 发布了一款面向 Agent 协作的开源框架:Cooragent。
刚刚,清华大模型团队 LeapLab 发布了一款面向 Agent 协作的开源框架:Cooragent。
当前,强化学习(RL)方法在最近模型的推理任务上取得了显著的改进,比如 DeepSeek-R1、Kimi K1.5,显示了将 RL 直接用于基础模型可以取得媲美 OpenAI o1 的性能不过,基于 RL 的后训练进展主要受限于自回归的大语言模型(LLM),它们通过从左到右的序列推理来运行。
微软研究院开源的原生1bit大模型BitNet b1.58 2B4T,将低精度与高效能结合,开创了AI轻量化的新纪元。通过精心设计的推理框架,BitNet不仅突破了内存的限制,还在多项基准测试中表现出色,甚至与全精度模型不相上下。
Two Heads are Better Than One"(两个脑袋比一个好/双Agent更优)源自英语中的一句古老谚语。MAS-TTS框架的研究者将这一朴素智慧应用到LLM中,创造性地让多个智能体协同工作,如同专家智囊团。
最近,来自大连理工和莫纳什大学的团队提出了物理真实的视频生成框架 VLIPP。通过利用视觉语言模型来将物理规律注入到视频扩散模型的方法来提升视频生成中的物理真实性。
这是一份142页的研究论文,本文深入解析了大型推理模型DeepSeek-R1如何通过"思考"解决问题。研究揭示了模型思维的结构化过程,以及每个问题都存在甜蜜点"最佳推理区间"的惊人发现。这标志着"思维学"这一新兴领域的诞生,为我们理解和优化AI推理能力提供了宝贵框架。
能处理任意条件组合的新生成框架来了!
文生图新架构来了!
近年来,大语言模型(LLMs)的对齐研究成为人工智能领域的核心挑战之一,而偏好数据集的质量直接决定了对齐的效果。无论是通过人类反馈的强化学习(RLHF),还是基于「RL-Free」的各类直接偏好优化方法(例如 DPO),都离不开高质量偏好数据集的构建。
RTP-LLM 是阿里巴巴大模型预测团队开发的高性能 LLM 推理加速引擎。它在阿里巴巴集团内广泛应用,支撑着淘宝、天猫、高德、饿了么等核心业务部门的大模型推理需求。在 RTP-LLM 上,我们实现了一个通用的投机采样框架,支持多种投机采样方法,能够帮助业务有效降低推理延迟以及提升吞吐。