字节开源图像生成“六边形战士”,一个模型搞定人物/主体/风格保持
字节开源图像生成“六边形战士”,一个模型搞定人物/主体/风格保持图像生成中的多指标一致性问题,被字节团队解决了! 字节UXO团队设计并开源了统一框架USO,让看上去不关联的任务相互促进,实现风格迁移和主体保持单任务和组合任务的SOTA。
图像生成中的多指标一致性问题,被字节团队解决了! 字节UXO团队设计并开源了统一框架USO,让看上去不关联的任务相互促进,实现风格迁移和主体保持单任务和组合任务的SOTA。
大语言模型通过 CoT 已具备强大的数学推理能力,而 Beam Search、DVTS 等测试时扩展(Test-Time Scaling, TTS)方法可通过分配额外计算资源进一步提升准确性。然而,现有方法存在两大关键缺陷:路径同质化(推理路径趋同)和中间结果利用不足(大量高质量推理分支被丢弃)。
清华大学、北京中关村学院、无问芯穹联合北大、伯克利等机构重磅开源RLinf:首个面向具身智能的“渲训推一体化”大规模强化学习框架。
在《流浪地球 2》中图恒宇将 AI 永生数字生命变为可能,旨为将人类意识进行数字化备份并进行意识上传,以实现人类文明的完全数字化。
本文介绍了来自北京大学王选计算机研究所王勇涛团队及合作者的最新研究成果 AutoOcc。针对开放自动驾驶场景,该篇工作提出了一个高效、高质量的 Open-ended 三维语义占据栅格真值标注框架,无需任何人类标注即可超越现有语义占据栅格自动化标注和预测管线,并展现优秀的通用性和泛化能力,论文已被 ICCV 2025 录用为 Highlight。
AI加速走向落地,企业「超级大脑」却在关键时刻断片?行业亟需一套能够持续进化、越用越聪明的系统框架,实现多智能体协同作战,通过自优化、自反馈瞬间激活知识库。清华系黑马已将其塞进AI原生引擎,率先在能源、军工等硬核场景中规模化落地,为产业智能升级提供了可靠路径。
人工智能的浪潮正将我们推向一个由 RAG 和 AI Agent 定义的新时代。然而,要让这些智能体真正「智能」,而非仅仅是信息的搬运工,就必须攻克一个横亘在所有顶尖团队面前的核心难题。这个难题,就是推理密集型信息检索(Reasoning-Intensive IR)。
人类和AI在工作中如何协作?耶鲁和南大的研究人员合作的这篇论文讲清楚了。 这篇论文提出了一个数学框架,通过把工作技能拆分成两个层次来解释这个问题
人形机器人的运动控制,正成为强化学习(RL)算法应用的下一个热点研究领域。当前,主流方案大多遵循 “仿真到现实”(Sim-to-Real)的范式。研究者们通过域随机化(Domain Randomization)技术,在成千上万个具有不同物理参数的仿真环境中训练通用控制模型,期望它能凭借强大的泛化能力,直接适应动力学特性未知的真实世界。
能自动操作手机、电脑的智能体新SOTA来了。 通义实验室推出Mobile-Agent-v3智能体框架,在手机端和电脑端的多个核心榜单上均取得开源最佳。