
新范式,自回归大一统!北大提出VARGPT:单一框架实现视觉「理解」与「生成」
新范式,自回归大一统!北大提出VARGPT:单一框架实现视觉「理解」与「生成」VARGPT是一种新型多模态大模型,能够在单一框架内实现视觉理解和生成任务。通过预测下一个token完成视觉理解,预测下一个scale完成视觉生成,展现出强大的混合模态输入输出能力。
VARGPT是一种新型多模态大模型,能够在单一框架内实现视觉理解和生成任务。通过预测下一个token完成视觉理解,预测下一个scale完成视觉生成,展现出强大的混合模态输入输出能力。
随着大模型(LLMs)的发展,AI 写作取得了较大进展。然而,现有的方法大多依赖检索知识增强生成(RAG)和角色扮演等技术,其在信息的深度挖掘方面仍存在不足,较难突破已有知识边界,导致生成的内容缺乏深度和原创性。
北京大学信息工程学院田永鸿教授、陈杰副教授,联合广州国家实验室周鹏研究员指导博士生聂志伟、硕士生刘旭东等,提出了一种进化驱动的病毒变异驱动力预测框架 E2VD,可以对新冠病毒、流感病毒、寨卡病毒、艾滋病病毒进行预测。
人大清华团队提出Search-o1框架,大幅提升推理模型可靠性。尤其是「文档内推理」模块有效融合了知识学习与推理过程,在「搜索+学习」范式基础上,使得模型的推理表现与可靠性都更上一层楼。
模型蒸馏也有「度」,过度蒸馏,只会导致模型性能下降。最近,来自中科院、北大等多家机构提出全新框架,从两个关键要素去评估和量化蒸馏模型的影响。结果发现,除了豆包、Claude、Gemini之外,大部分开/闭源LLM蒸馏程度过高。
ittor Geometric 1.0是由中国人民大学与东北大学联合开发的图机器学习库,基于国产Jittor框架,高效灵活,可助力处理复杂图结构数据,性能优于同类型框架,支持多种前沿图神经网络模型,已开源供用户使用。
o1背后的推理原理,斯坦福和伯克利帮我们总结好了!
在当今AI技术迅猛发展的背景下,大语言模型(LLM)的评估问题已成为一个不可忽视的挑战。传统的做法是直接采用最强大的模型(如GPT-4)进行评估,这就像让最高法院的大法官直接处理所有交通违章案件一样,既不经济也不一定总能保证公正。
一个新框架,让Qwen版o1成绩暴涨: 在博士级别的科学问答、数学、代码能力的11项评测中,能力显著提升,拿下10个第一! 这就是人大、清华联手推出的最新「Agentic搜索增强推理模型框架」Search-o1的特别之处。
Uni-AdaFocus 是一个通用的高效视频理解框架,实现了降低时间、空间、样本三维度冗余性的统一建模。代码和预训练模型已开源,还有在自定义数据集上使用的完善教程,请访问项目链接。