
华为:AI大消息
华为:AI大消息12月14日,昇思人工智能框架峰会召开,现场18家单位发布基于昇思的原生开发大模型成果。伴随AI框架生态进入“深水区”,昇思朋友圈也在持续扩容,多家上市公司已成为昇思生态建设的主力军。
12月14日,昇思人工智能框架峰会召开,现场18家单位发布基于昇思的原生开发大模型成果。伴随AI框架生态进入“深水区”,昇思朋友圈也在持续扩容,多家上市公司已成为昇思生态建设的主力军。
我们距离AGI还有多远?智能体、智能体自动化的5个级别与自主工作的6个level
开发AI应用的朋友们都有深刻的感受,在实际应用开发中,如何让LLM高效地使用外部工具,一直是困扰Prompt工程师的一个关键问题。最近,来自Faculty Science Ltd的研究团队提出的Language Hooks框架,为这个问题提供了一个令人耳目一新的解决方案。
大语言模型(LLMs)在推理任务上展现出了令人瞩目的能力,但其推理思维方式的单一性一直是制约性能提升的关键瓶颈。目前的研究主要关注如何通过思维链(Chain-of-Thought)等方法来提升推理的质量,却忽视了一个重要维度——推理类型的多样性。
Allen Institute for AI(AI2)发布了Tülu 3系列模型,一套开源的最先进的语言模型,性能与GPT-4o-mini等闭源模型相媲美。Tülu 3包括数据、代码、训练配方和评估框架,旨在推动开源模型后训练技术的发展。
Cell Reports Medicine近期的研究结合CT和病理图像,提出一种可解释的人工智能框架用于预测胃癌患者新辅助化疗的疗效。
在人工智能发展史上,强化学习 (RL) 凭借其严谨的数学框架解决了众多复杂的决策问题,从围棋、国际象棋到机器人控制等领域都取得了突破性进展。
近两年来,AI技术取得了重大发展。与此同时,对于使用版权内容进行AI模型训练争议不断,各国也都在积极探索适合自身的规制框架。
大语言模型(LLM)在各种任务上展示了卓越的性能。然而,受到幻觉(hallucination)的影响,LLM 生成的内容有时会出现错误或与事实不符,这限制了其在实际应用中的可靠性。
Prime Intellect 宣布通过去中心化方式训练完成了一个 10B 模型。30 号,他们开源了一切,包括基础模型、检查点、后训练模型、数据、PRIME 训练框架和技术报告。据了解,这应该是有史以来首个以去中心化形式训练得到的 10B 大模型。