突破视觉-语言-动作模型的瓶颈:QDepth-VLA让机器人拥有更精准的3D空间感知
突破视觉-语言-动作模型的瓶颈:QDepth-VLA让机器人拥有更精准的3D空间感知视觉-语言-动作模型(VLA)在机器人操控领域展现出巨大潜力。通过赋予预训练视觉-语言模型(VLM)动作生成能力,机器人能够理解自然语言指令并在多样化场景中展现出强大的泛化能力。然而,这类模型在应对长时序或精细操作任务时,仍然存在性能下降的现象。
视觉-语言-动作模型(VLA)在机器人操控领域展现出巨大潜力。通过赋予预训练视觉-语言模型(VLM)动作生成能力,机器人能够理解自然语言指令并在多样化场景中展现出强大的泛化能力。然而,这类模型在应对长时序或精细操作任务时,仍然存在性能下降的现象。
脉冲神经网络(SNN)不用再纠结二进制短板了。
科学发现的轨迹,如同交织在人类历史中的璀璨织锦,经历了一系列范式的演进。早期的探索,主要依赖于由直觉、反复试验或机缘巧合驱动的经验发现。随后,以牛顿力学为代表的理论框架,为我们洞察自然现象的基本原理提供了基石。
2小时17分钟,这是截至2025年8月,前沿AI模型在保持50%成功率的前提下,能够维持连续推理工作的时长。这个数字意味着AI已经从处理“秒级”的代码片段,跨越到了处理“小时级”的复杂工程任务。
Google宣判RAG死刑!那条曾让无数工程师自豪的技术链,如今只剩下一行API调用。Gemini的File Search,把检索、分块、索引、引用,全都封进了模型内部。开发者不再需要理解流程,只需要上传文件。当智能被自动化吞并,工程师第一次发现,自己也成了被自动化的一部分。
AI正从「规模时代」,重新走向「科研时代」。这是Ilya大神在最新采访中发表的观点。这一次,Ilya一顿输出近2万字,信息量爆炸,几乎把当下最热门的AI话题都聊了个遍:Ilya认为,目前主流的「预训练 + Scaling」路线已经明显遇到瓶颈。与其盲目上大规模,不如把注意力放回到「研究范式本身」的重构上。
在AI视频创作过程中,创作者常因频繁切换多种工具而疲惫,导致创作热情消磨。近期,多所高校联合开源的UniVA框架,像一位「AI导演」,能整合多种视频工具,提供从脚本到成片的一站式自动化体验,改变传统「抽卡」式创作,支持多轮交互和主动纠错,还能实现风格迁移、前传创作等功能,为视频创作带来高效与便捷。
Black Forest Labs的开源视觉模型FLUX.2上新,这是一款专为现实创意工作流程打造,绝非演示噱头的生产力工具,与前代FLUX.1相比,实现了从「会画」到「懂你要画什么」的跃升。
当大模型参数量冲向万亿级,GPT-4o、Llama4 等模型不断刷新性能上限时,AI 行业也正面临前所未有的瓶颈。Transformer 架构效率低、算力消耗惊人、与物理世界脱节等问题日益凸显,通用人工智能(AGI)的实现路径亟待突破。
AI训练背后,正在上演一场新的「华尔街迁徙」!前银行家纷纷化身AI导师,用自己的专业知识帮助OpenAI、xAI、Scale AI等AI公司训练模型,华尔街精英正在成为AI重塑华尔街的幕后推手。