综述238篇遥感微调!清华院士团队指出9大方向 | CVMJ
综述238篇遥感微调!清华院士团队指出9大方向 | CVMJ在大数据和大模型推动下,微调技术凭借成本低、效率高优势,成为应对小样本、长尾目标等复杂场景的利器。从早期全参数微调到参数高效微调(PEFT),再到如今融合多种PEFT技术的混合微调,遥感微调技术不断进化。清华大学等团队在CVMJ期刊上系统梳理了技术脉络,并指出了九个潜在研究方向,助力遥感技术在农业监测、天气预报等关键领域发挥更大作用。
在大数据和大模型推动下,微调技术凭借成本低、效率高优势,成为应对小样本、长尾目标等复杂场景的利器。从早期全参数微调到参数高效微调(PEFT),再到如今融合多种PEFT技术的混合微调,遥感微调技术不断进化。清华大学等团队在CVMJ期刊上系统梳理了技术脉络,并指出了九个潜在研究方向,助力遥感技术在农业监测、天气预报等关键领域发挥更大作用。
前段时间某视频模型更新 2.0 的时候,写了一篇文章,其中提到了一个观点:用户不需要第二个 AI 视频的抖音。这次核心不是模型能力提升,不是 AI Feed 流,而是底层模型能力提升带来的全新「创意社交」玩法。
在 AI 多模态的发展历程中,OpenAI 的 CLIP 让机器第一次具备了“看懂”图像与文字的能力,为跨模态学习奠定了基础。如今,来自 360 人工智能研究院冷大炜团队的 FG-CLIP 2 正式发布并开源,在中英文双语任务上全面超越 MetaCLIP 2 与 SigLIP 2,并通过新的细粒度对齐范式,补足了第一代模型在细节理解上的不足。
AI时代,人不再只是「社会关系的总和」,而是由无数数据、记录和互动的上下文构成的。
统一多模态模型要求视觉表征必须兼顾语义(理解)和细节(生成 / 编辑)。早期 VAE 因语义不足而理解受限。近期基于 CLIP 的统一编码器,面临理解与重建的权衡:直接量化 CLIP 特征会损害理解性能;而为冻结的 CLIP 训练解码器,又因特征细节缺失而无法精确重建。例如,RAE 使用冻结的 DINOv2 重建,PSNR 仅 19.23。
奥特曼正在用万亿美金的算力豪赌,试图买下全球GPU来喂饱「增长黑洞」。为什么AI竞争的终局不是模型,而是算力?
Meta首席执行官马克·扎克伯格近日批准了一项涉及约600名员工的AI部门裁员计划,这是Meta今年在人工智能领域规模最大的一次调整,主要波及公司核心研发机构。在此消息公布后,田渊栋首次公开露面,接受了腾讯科技特约作者「课代表立正」的独家深度访谈。
当AI模型排行榜开始被各种刷分作弊之后,谁家大模型最牛这个问题就变得非常主观,直到一家线上排行榜诞生,它叫:LMArena。在文字、视觉、搜索、文生图、文生视频等不同的AI大模型细分领域,LMArena上每天都有上千场的实时对战,由普通用户来匿名投票选出哪一方的回答更好。
AI健康管理领域的产品层出不穷,功能设计结合大模型甚至Agent也成为当前发展方向。OtterLife,这款AI健康管理产品,将虚拟游戏宠物角色“海獭”融入用户健康习惯养成过程,却在动力略显不足的市场现状下,获得了上线一年用户破百万的亮眼成绩,且用户留存率超过行业平均水平。
AEPO 系统性揭示了「高熵 Rollout 采样坍缩」和「高熵梯度裁剪」问题,并设计了「动态熵平衡 Rollout 采样」与「熵平衡策略优化」两项核心机制。前者通过熵预监控与连续分支惩罚实现全局与局部探索预算的自适应分配,后者在策略更新阶段引入梯度停止与熵感知优势估计以保留高熵 token 的探索梯度。