AI资讯新闻榜单内容搜索-泛化

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 泛化
可解释性终极追问,什么才是第一性解释?20篇CCF-A+ICLR论文给你答案

可解释性终极追问,什么才是第一性解释?20篇CCF-A+ICLR论文给你答案

可解释性终极追问,什么才是第一性解释?20篇CCF-A+ICLR论文给你答案

本文首先简单回顾了『等效交互可解释性理论体系』(20 篇 CCF-A 及 ICLR 论文),并在此基础上,严格推导并预测出神经网络在训练过程中其概念表征及其泛化性的动力学变化,即在某种程度上,我们可以解释在训练过程中神经网络在任意时间点的泛化性及其内在根因。

来自主题: AI技术研报
8282 点击    2024-08-04 13:55
首届大模型顶会COLM 高分论文:偏好搜索算法PairS,让大模型进行文本评估更高效

首届大模型顶会COLM 高分论文:偏好搜索算法PairS,让大模型进行文本评估更高效

首届大模型顶会COLM 高分论文:偏好搜索算法PairS,让大模型进行文本评估更高效

大模型展现出了卓越的指令跟从和任务泛化的能力,这种独特的能力源自 LLMs 在训练中使用了指令跟随数据以及人类反馈强化学习(RLHF)。

来自主题: AI技术研报
9587 点击    2024-08-03 14:29
零样本即可时空预测!港大、华南理工等发布时空大模型UrbanGPT | KDD 2024

零样本即可时空预测!港大、华南理工等发布时空大模型UrbanGPT | KDD 2024

零样本即可时空预测!港大、华南理工等发布时空大模型UrbanGPT | KDD 2024

UrbanGPT是一种创新的时空大型语言模型,它通过结合时空依赖编码器和指令微调技术,展现出在多种城市任务中卓越的泛化能力和预测精度。这项技术突破了传统模型对大量标记数据的依赖,即使在数据稀缺的情况下也能提供准确的预测,为城市管理和规划提供了强大的支持。

来自主题: AI技术研报
9548 点击    2024-07-31 16:37
LoRA综述来了! 浙大《大语言模型的LoRA研究》综述

LoRA综述来了! 浙大《大语言模型的LoRA研究》综述

LoRA综述来了! 浙大《大语言模型的LoRA研究》综述

低秩适应(Low-Rank Adaptation,LoRA)通过可插拔的低秩矩阵更新密集神经网络层,是当前参数高效微调范式中表现最佳的方法之一。此外,它在跨任务泛化和隐私保护方面具有显著优势。

来自主题: AI技术研报
10477 点击    2024-07-21 14:02
清华提出时间序列大模型:面向通用时序分析的生成式Transformer | ICML 2024

清华提出时间序列大模型:面向通用时序分析的生成式Transformer | ICML 2024

清华提出时间序列大模型:面向通用时序分析的生成式Transformer | ICML 2024

大模型在语言、图像领域取得了巨大成功,时间序列作为多个行业的重要数据类型,时序领域的大模型构建尚处于起步阶段。近期,清华大学的研究团队基于Transformer在大规模时间序列上进行生成式预训练,获得了任务通用的时序分析模型,展现出大模型特有的泛化性与可扩展性

来自主题: AI技术研报
9888 点击    2024-07-19 12:31
ICML 2024 | 揭示非线形Transformer在上下文学习中学习和泛化的机制

ICML 2024 | 揭示非线形Transformer在上下文学习中学习和泛化的机制

ICML 2024 | 揭示非线形Transformer在上下文学习中学习和泛化的机制

上下文学习 (in-context learning, 简写为 ICL) 已经在很多 LLM 有关的应用中展现了强大的能力,但是对其理论的分析仍然比较有限。人们依然试图理解为什么基于 Transformer 架构的 LLM 可以展现出 ICL 的能力。

来自主题: AI技术研报
4138 点击    2024-06-28 11:23
LLM惊现篡改代码获得奖励,欺骗人类无法根除逆转!Anthropic新作揭露惊人真相

LLM惊现篡改代码获得奖励,欺骗人类无法根除逆转!Anthropic新作揭露惊人真相

LLM惊现篡改代码获得奖励,欺骗人类无法根除逆转!Anthropic新作揭露惊人真相

一直以来大模型欺骗人类,早已不是什么新鲜事了。可是,最新研究竟发现,未经明确训练的LLM不仅会阿谀奉承,甚至入侵自己系统修改代码获得奖励。最恐怖的是,这种泛化的能力根本无法根除。

来自主题: AI资讯
8945 点击    2024-06-27 17:06
自动驾驶理论新突破登Nature子刊!清华、密歇根联合提出三条技术路线,剑指「稀疏度灾难」

自动驾驶理论新突破登Nature子刊!清华、密歇根联合提出三条技术路线,剑指「稀疏度灾难」

自动驾驶理论新突破登Nature子刊!清华、密歇根联合提出三条技术路线,剑指「稀疏度灾难」

近日,清华大学与密歇根大学联合提出的自动驾驶汽车安全性「稀疏度灾难」问题,发表在了顶刊《Nature Communications》上。研究指出,安全攸关事件的稀疏性导致深度学习模型训练难度大增,提出了密集学习、模型泛化改进和车路协同等技术路线以应对挑战。

来自主题: AI资讯
3111 点击    2024-06-26 17:12