LLM又曝致命缺陷:根本不会看时钟!博士惊呆,准确率不及50%
LLM又曝致命缺陷:根本不会看时钟!博士惊呆,准确率不及50%AI能写论文、画图、考高分,但连「看表读时间」「今天是星期几」都错得离谱?最新研究揭示了背后惊人的认知缺陷,提醒我们:AI很强大,但精确推理还离不开人类。
AI能写论文、画图、考高分,但连「看表读时间」「今天是星期几」都错得离谱?最新研究揭示了背后惊人的认知缺陷,提醒我们:AI很强大,但精确推理还离不开人类。
本文由匹兹堡大学智能系统实验室(Intelligent Systems Laboratory)的研究团队完成。第一作者为匹兹堡大学的一年级博士生薛琪耀。
在全球AI应用市场竞争日益激烈的今天,了解成功产品的内容构建策略至关重要。我最近深入研究了两个AI应用领域的出海标杆产品:Pollo.ai和Monica.im,希望通过这些成功案例,探索面向消费者(to C)的AI应用应该构建什么类型的内容,以如何何在不同内容类型上合理分配精力投入。
ChatGPT悄悄上线的直连Github新功能太强大!一旦连上Github,立马化身「研究怪兽」:不管是DeepSeek这样的明星开源项目,还是自己DIY的文档资料,只要放进仓库,就能交给深度研究,一键生成专业到飞起的报告。
我们发现,当模型在测试阶段花更多时间思考时,其推理表现会显著提升,这打破了业界普遍依赖预训练算力的传统认知。
本文作者分别来自中国科学院大学和中国科学院计算技术研究所。第一作者裴高政为中国科学院大学博士二年级学生,本工作共同通讯作者是中国科学院大学马坷副教授和黄庆明教授。
太疯狂了,AlphaGo的「第37步」时刻,已经来临。谷歌的AlphaEvolve,让我们从此进入AI创造科学的时代,人类科研将彻底颠覆!背后的研究者也首次接受采访,揭秘研究过程中的一些惊人细节。
ChatGPT「舔狗化」事件背后,暴漏目前AI仍是「黑箱」。 一场关于「机制可解释性」的路线分歧,正撕裂AI研究最核心的价值共识。谷歌认怂,Anthropic死磕——AI还能被「看懂」吗?
强化学习(RL)+真实搜索引擎,可以有效提升大模型检索-推理能力。
近日,腾讯 PCG 社交线的研究团队针对这一问题,采用强化学习(RL)训练方法,通过分组相对策略优化(Group Relative Policy Optimization, GRPO)算法,结合基于奖励的课程采样策略(Reward-based Curriculum Sampling, RCS),将其创新性地应用在意图识别任务上,