
240元打造擅长数学的多模态版R1,基于DeepSeek核心思想,两阶段训练提升推理能力至工业级应用标准
240元打造擅长数学的多模态版R1,基于DeepSeek核心思想,两阶段训练提升推理能力至工业级应用标准多模态大模型虽然在视觉理解方面表现出色,但在需要深度数学推理的任务上往往力不从心,尤其是对于参数量较小的模型来说更是如此。
多模态大模型虽然在视觉理解方面表现出色,但在需要深度数学推理的任务上往往力不从心,尤其是对于参数量较小的模型来说更是如此。
跨模态因果对齐,让机器更懂视觉证据!
最近的研究强调了扩散模型与表征学习之间的相互作用。扩散模型的中间表征可用于下游视觉任务,同时视觉模型表征能够提升扩散模型的收敛速度和生成质量。然而,由于输入不匹配和 VAE 潜在空间的使用,将视觉模型的预训练权重迁移到扩散模型中仍然具有挑战性。
当前,视觉语言模型(VLMs)的能力边界不断被突破,但大多数评测基准仍聚焦于复杂知识推理或专业场景。本文提出全新视角:如果一项能力对人类而言是 “无需思考” 的本能,但对 AI 却是巨大挑战,它是否才是 VLMs 亟待突破的核心瓶颈?
它能像人眼一样,在文本、视觉输入和无提示范式等不同机制下进行检测和分割。
武汉大学等发布了一篇大型视觉语言模型(LVLMs)安全性的综述论文,提出了一个系统性的安全分类框架,涵盖攻击、防御和评估,并对最新模型DeepSeek Janus-Pro进行了安全性测试,发现其在安全性上存在明显短板。
Magma是一个新型多模态基础模型,能够理解和执行多模态任务,适用于数字和物理环境:通过标记集合(SoM)和标记轨迹(ToM)技术,将视觉语言数据转化为可操作任务,显著提升了空间智能和任务泛化能力。
最新开源的视觉预训练方法,马毅团队、微软研究院、UC伯克利等联合出品!
CVPR 2025,混合新架构MambaVision来了!Mamba+Transformer混合架构专门为CV应用设计。MambaVision 在Top-1精度和图像吞吐量方面实现了新的SOTA,显著超越了基于Transformer和Mamba的模型。
由UCLA等机构共同组建的研究团队,全球首次在20亿参数非SFT模型上,成功实现了多模态推理的DeepSeek-R1「啊哈时刻」!就在刚刚,我们在未经监督微调的2B模型上,见证了基于DeepSeek-R1-Zero方法的视觉推理「啊哈时刻」!