
4D空间智能:AI如何一步步「看懂」时空结构?一篇综述解析通往四维世界的五大层次
4D空间智能:AI如何一步步「看懂」时空结构?一篇综述解析通往四维世界的五大层次4D 空间智能重建是计算机视觉领域的核心挑战,其目标在于从视觉数据中还原三维空间的动态演化过程。这一技术通过整合静态场景结构与时空动态变化,构建出具有时间维度的空间表征系统,在虚拟现实、数字孪生和智能交互等领域展现出关键价值。
4D 空间智能重建是计算机视觉领域的核心挑战,其目标在于从视觉数据中还原三维空间的动态演化过程。这一技术通过整合静态场景结构与时空动态变化,构建出具有时间维度的空间表征系统,在虚拟现实、数字孪生和智能交互等领域展现出关键价值。
近日,ICCV 2025(国际计算机视觉大会)公布论文录用结果,理想汽车共有 8 篇论文入选,其中 3 篇来自基座模型团队。
过去几年,通用视觉模型(Vision Generalist Model,简称 VGM)曾是计算机视觉领域的研究热点。
扩散模型(Diffusion Models, DMs)近年来展现出巨大的潜力,在计算机视觉和自然语言处理等诸多任务中取得了显著进展,而异常检测(Anomaly Detection, AD)作为人工智能领域的关键研究任务,在工业制造、金融风控、医疗诊断等众多实际场景中发挥着重要作用。
在日常生活中,我们常通过语言描述寻找特定物体:“穿蓝衬衫的人”“桌子左边的杯子”。如何让 AI 精准理解这类指令并定位目标,一直是计算机视觉的核心挑战。
在建筑行业中,管理人员很容易与现场实际情况脱节。他们需要同时处理多项任务,包括掌握成本动态、与所有利益相关方沟通,以及评估与承包商账单和绩效等方面相关的风险。
而马毅是那类觉得不够的人,他于无声处开始提问:智能的本质是什么?自 2000 年从伯克利大学博士毕业以来,马毅先后任职于伊利诺伊大学香槟分校(UIUC)、微软亚研院、上海科技大学、伯克利大学和香港大学,现担任香港大学计算与数据科学学院院长。他和团队提出的压缩感知技术,到现在还在影响计算机视觉中模式识别领域的发展。
从单张低分辨率(LR)图像恢复出高分辨率(HR)图像 —— 即 “超分辨率”(SR)—— 已成为计算机视觉领域的重要挑战。
大规模数据集和标准化评估基准显著促进了自然语言处理和计算机视觉领域的发展。然而,机器人领域在如何构建大规模数据集并建立可靠的评估体系方面仍面临巨大挑战。
如何从一张普通的单幅图像准确估计物体的三维法线和材质属性,是计算机视觉与图形学领域长期关注的难题。