AI资讯新闻榜单内容搜索-训练

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 训练
SIGGRAPH Asia 2025|30FPS普通相机恢复200FPS细节,4D重建方案来了

SIGGRAPH Asia 2025|30FPS普通相机恢复200FPS细节,4D重建方案来了

SIGGRAPH Asia 2025|30FPS普通相机恢复200FPS细节,4D重建方案来了

当古装剧中的长袍在武林高手凌空翻腾的瞬间扬起 0.01 秒的惊艳弧度,当 VR 玩家想伸手抓住对手 “空中定格” 的剑锋,当 TikTok 爆款视频里一滴牛奶皇冠般的溅落要被 360° 无死角重放 —— 如何用普通的摄像机,把瞬间即逝的高速世界 “冻结” 成可供反复拆解、传送与交互的数字化 4D 时空,成为 3D 视觉领域的一个难题。

来自主题: AI技术研报
8222 点击    2025-12-15 14:50
6位前DeepMind老将打造「AI指挥官」,一半成本刷新SOTA

6位前DeepMind老将打造「AI指挥官」,一半成本刷新SOTA

6位前DeepMind老将打造「AI指挥官」,一半成本刷新SOTA

6位前DeepMind成员以元系统重塑大模型调用方式,该系统推出的Gemini 3 Pro优化技术在ARC-AGI-2上以54%的成绩夺得榜首,而成本仅为此前最优方法的一半。

来自主题: AI技术研报
7702 点击    2025-12-15 11:31
全球强化学习+VLA范式,PI*0.6背后都有这家中国公司技术伏笔

全球强化学习+VLA范式,PI*0.6背后都有这家中国公司技术伏笔

全球强化学习+VLA范式,PI*0.6背后都有这家中国公司技术伏笔

在 Physical Intelligence 最新的成果 π0.6 论文里,他们介绍了 π0.6 迭代式强化学习的思路来源:

来自主题: AI技术研报
8391 点击    2025-12-15 09:58
AAAI 2026 Oral | 拒绝「一刀切」!AdaMCoT:让大模型学会「看题下菜碟」,动态选择最佳思考语言

AAAI 2026 Oral | 拒绝「一刀切」!AdaMCoT:让大模型学会「看题下菜碟」,动态选择最佳思考语言

AAAI 2026 Oral | 拒绝「一刀切」!AdaMCoT:让大模型学会「看题下菜碟」,动态选择最佳思考语言

多语言大模型(MLLM)在面对多语言任务时,往往面临一个选择难题:是用原来的语言直接回答,还是翻译成高资源语言去推理?

来自主题: AI技术研报
9518 点击    2025-12-15 09:53
NeurIPS 2025 | 告别全量扫描!浙大提出COIDO:破解多模态数据选择「高耗」难题

NeurIPS 2025 | 告别全量扫描!浙大提出COIDO:破解多模态数据选择「高耗」难题

NeurIPS 2025 | 告别全量扫描!浙大提出COIDO:破解多模态数据选择「高耗」难题

在深入技术细节之前,我们先用一张漫画来直观理解 COIDO (Coupled Importance-Diversity Optimization) 解决的核心问题与方案:正如钟离在漫画中所言,面对海量视觉指令数据的选择任务,传统方法需要遍历全部数据才能进行筛选造成大量「磨损」(高昂计算成本)。同时在面对数据重要性和多样性问题时,传统方法往往顾此失彼。

来自主题: AI技术研报
6565 点击    2025-12-14 10:46
面向「空天具身智能」,北航团队提出星座规划新基准丨NeurIPS'25

面向「空天具身智能」,北航团队提出星座规划新基准丨NeurIPS'25

面向「空天具身智能」,北航团队提出星座规划新基准丨NeurIPS'25

北航刘偲教授团队提出首个大规模真实星座调度基准AEOS-Bench,更创新性地将Transformer模型的泛化能力与航天工程的专业需求深度融合,训练内嵌时间约束的调度模型AEOS-Former。这一组合为未来的“AI星座规划”奠定了新的技术基准。

来自主题: AI资讯
7329 点击    2025-12-13 15:48
港大开源ViMax火了,实现AI自编自导自演

港大开源ViMax火了,实现AI自编自导自演

港大开源ViMax火了,实现AI自编自导自演

想象一下,只需要一句话描述,AI 就能为你拍出一部完整的短剧?为了让这个想法变成现实,香港大学黄超教授团队开源了 ViMax 框架,并在 GitHub 获得 1.4k + 星标,专注于 Agentic Video Generation 的前沿探索。通过多智能体协作,ViMax 实现了真正的 "自编自导自演"—— 从创意构思到成片输出的完整自动化,把传统影视制作的每个环节都搬进了 AI 世界。

来自主题: AI技术研报
8189 点击    2025-12-13 11:06
多智能体一定比单智能体要好?Google最新研究:并非如此!

多智能体一定比单智能体要好?Google最新研究:并非如此!

多智能体一定比单智能体要好?Google最新研究:并非如此!

最近,来自Google Research、Google DeepMind和MIT的研究者们联合发表了一项重磅研究。结果显示:盲目增加智能体数量,在很多时候不仅没用,反而会让系统变笨、变慢、变贵。

来自主题: AI技术研报
6612 点击    2025-12-13 11:00