摘要
本发明属于人工智能技术领域,公开了一种基于深度强化学习的拆解线平衡方法,包括以下步骤:S1:对拆解产品信息预处理;S2:定义人体疲劳影响因素;S3:定义符号、决策变量和约束关系,建立拆解目标函数;建立疲劳与目标函数之间的关系,建立人体疲劳影响的拆解线平衡问题数学模型;S4:将S3建立好的数学模型转化为马尔可夫决策过程MDP;S5:设计基于Q‑learning算法的DDQN网络模型结构,得到最优目标函数值。本发明将疲劳累积与恢复公式嵌入拆解线优化,并以最小化拆解时间为目标函数建立数学模型,利用结合了transformer的DDQN强化学习算法求解目标函数,实现拆解线平衡优化。