一篇被证明“理论有误”的论文,拿下了ICML2025时间检验奖
一篇被证明“理论有误”的论文,拿下了ICML2025时间检验奖深度学习界的传奇论文,终于等来了它的“封神”时刻!
深度学习界的传奇论文,终于等来了它的“封神”时刻!
MIRIX,一个由 UCSD 和 NYU 团队主导的新系统,正在重新定义 AI 的记忆格局。
上周五(711),月之暗面蛰伏半年,憋了个大的,正式发布Kimi K2模型,总参数1T,同步开源。具体模型效果就不过多赘述了,网上已经有很多实测。
我们正经历一场前所未有的智能跃迁。人工智能带来的,远不止于技术革新,更是一场深刻重塑人类认知、教育与生存方式的范式转移。
现在几乎所有主流的代码生成工具都在用CoT。但问题来了:这些"思考步骤"真的可靠吗?来自北京航空航天大学的研究者们发现,虽然CoT提升了性能,但关于这些中间推理步骤的质量,学术界竟然没有系统性的研究!
疯狂,太疯狂了~ 大神卡帕西预测的「下一代GUI系统」这就水灵灵地实现了?!
都在研究考生,考卷出问题了。
还在担心机器人只能机械执行、不会灵活应变?
本文作者来自:南京大学、香港大学、中南大学、地平线、中国科学院计算所、上海交通大学、慕尼黑工业大学、清华大学。
Google双线出击!T5Gemma重燃encoder-decoder架构战火,性能暴涨12分;MedGemma坚守decoder-only路线,强攻医疗多模态,击穿闭源壁垒。Gemma体系完成「架构+落地」双重进化,打响Google开源反击战。
借助AI,新型蛋白质合成周期大幅降低!
大家好,我是歸藏(guizang),今天展示一下我用 Kimi K2 实现的一套组件库,以及K2 替代 Claude Code 的默认模型的教程补充。
当甄嬛传、让子弹飞全都转英文,会怎样?
每当我们讨论AI对就业的影响时,大多数都是专家拍脑袋的预测。但微软研究院的这篇论文不一样,他们分析了20万个真实的Microsoft bing Copilot用户对话,每一个数据点背后都是一个真实的人,一个真实的工作场景,首次用硬数据告诉我们:AI到底在改变什么工作?哪些工作活动和职业正在被生成式AI(Generative AI)最大程度地影响?
边缘-云协同计算通过整合边缘节点和云端资源,解决了传统云计算的延迟和带宽问题,推动了分布式智能和模型优化的发展。最新综述论文系统梳理了ECCC的架构设计、模型优化、资源管理、隐私安全和实际应用,提出了统一的分布式智能与模型优化框架,为未来研究提供了方向,包括大语言模型部署、6G整合和量子计算等前沿技术。
在上一篇关于子模优化与多样化查询的文章发表后,我们收到了来自圈内很多积极的反馈,希望我们能多聊聊子模性(submodularity)和子模优化,尤其是在信息检索和 Agentic Search 场景下的更多应用。
在大语言模型能力如此强大的背景下,AI与神经科学之间的联系变得前所未有地重要,催生了一个新兴领域:NeuroAI。它关注两个角度的问题:
LLM正以前所未有的速度进化:METR发现,它们的智能每7个月就翻一番。到了2030年,一个模型可能只需几小时,就能搞定人类工程师几个月的工作。别眨眼,你的岗位或许已在倒计时中。
Zeju Qiu和Tim Z. Xiao是德国马普所博士生,Simon Buchholz和Maximilian Dax担任德国马普所博士后研究员
多模态大模型通常是在大型预训练语言模型(LLM)的基础上扩展而来。尽管原始的 LLM 并不具备视觉理解能力,但经过多模态训练后,这些模型却能在各类视觉相关任务中展现出强大的表现。
最强具身大脑,宝座易主!在10项评测中,国产RoboBrain 2.0全面超越GPT-4o。这次,智源研究院开源了具身大脑RoboBrain 2.0 32B版本以及跨本体大小脑协同框架RoboOS 2.0单机版。不仅问鼎评测基准SOTA,还成功刷新跨本体多机协作技术范式!
反思技术因其简单性和有效性受到了广泛的研究和应用,具体表现为在大语言模型遇到障碍或困难时,提示其“再想一下”,可以显著提升性能 [1]。然而,2024 年谷歌 DeepMind 的研究人员在一项研究中指出,大模型其实分不清对与错,如果不是仅仅提示模型反思那些它回答错误的问题,这样的提示策略反而可能让模型更倾向于把回答正确的答案改错 [2]。
你是不是也发现,用AI写SEO文章,总感觉差点意思?
AI现在有味觉了!
如今,强化学习(Reinforcement Learning,RL)在多个领域已取得显著成果。
首个能跨领域精准预测人类认知的基础模型诞生!
AI也能选择性失忆?Meta联合NYU发布新作,轻松操控缩放Transformer注意头,让大模型「忘掉狗会叫」。记忆可删、偏见可调、安全可破,掀开大模型「可编辑时代」,安全边界何去何从。
现在人工智能领域面临的最大挑战是广义的具身智能,即使你并不特别关心大脑本身……
近年来,视觉 - 语言 - 动作(Vision-Language-Action, VLA)模型因其出色的多模态理解与泛化能力,已成为机器人领域的重要研究方向。尽管相关技术取得了显著进展,但在实际部署中,尤其是在高频率和精细操作等任务中,VLA 模型仍受到推理速度瓶颈的严重制约。
近年来,随着扩散模型(Diffusion Models)和扩散 Transformer(DiT)在视频生成领域的广泛应用,AI 合成视频的质量和连贯性有了飞跃式提升。像 OpenAI Sora、HunyuanVideo、Wan2.1 等大模型,已经能够生成结构清晰、细节丰富且高度连贯的长视频内容,为数字内容创作、虚拟世界和多媒体娱乐带来了巨大变革。