
北大彭一杰教授课题组提出RiskPO,用风险度量优化重塑大模型后训练
北大彭一杰教授课题组提出RiskPO,用风险度量优化重塑大模型后训练当强化学习(RL)成为大模型后训练的核心工具,「带可验证奖励的强化学习(RLVR)」凭借客观的二元反馈(如解题对错),迅速成为提升推理能力的主流范式。从数学解题到代码生成,RLVR 本应推动模型突破「已知答案采样」的局限,真正掌握深度推理逻辑 —— 但现实是,以 GRPO 为代表的主流方法正陷入「均值优化陷阱」。
当强化学习(RL)成为大模型后训练的核心工具,「带可验证奖励的强化学习(RLVR)」凭借客观的二元反馈(如解题对错),迅速成为提升推理能力的主流范式。从数学解题到代码生成,RLVR 本应推动模型突破「已知答案采样」的局限,真正掌握深度推理逻辑 —— 但现实是,以 GRPO 为代表的主流方法正陷入「均值优化陷阱」。
对于大模型的强化学习已在数学推理、代码生成等静态任务中展现出不俗实力,而在需要与开放世界交互的智能体任务中,仍面临「两朵乌云」:高昂的 Rollout 预算(成千上万的 Token 与高成本的工具调用)和极其稀疏的「只看结果」的奖励信号。
让智能体自己摸索新方法,还模仿自己的成功经验。腾讯优图实验室开源强化学习算法——SPEAR(Self-imitation with Progressive Exploration for Agentic Reinforcement Learning)。
风雨飘摇中的Meta,于昨天发布了一篇重量级论文,提出了一种被称作「早期经验」(Early Experience)的全新范式,让AI智能体「无师自通」,为突破强化学习瓶颈提供了一种新思路。
开源编程模型王座,再度易主!来自快手的KAT-Dev-72B-Exp,在SWE-Bench认证榜单以74.6%的成绩夺得开源模型第一。KAT-Dev-72B-Exp是KAT-Coder模型的实验性强化学习版本。
AI Agent已逐渐从科幻走进现实!不仅能够执行编写代码、调用工具、进行多轮对话等复杂任务,甚至还可以进行端到端的软件开发,已经在金融、游戏、软件开发等诸多领域落地应用。
昨天,阿里通义千问大语言模型负责人林俊旸在社交媒体上官宣,他们在 Qwen 内部组建了一个小型机器人、具身智能团队,同时表示「多模态基础模型正转变为基础智能体,这些智能体可以利用工具和记忆通过强化学习进行长程推理,它们绝对应该从虚拟世界走向物理世界」。
具体而言,Verlog 是一个多轮强化学习框架,专为具有高度可变回合(episode)长度的长时程(long-horizon) LLM-Agent 任务而设计。它在继承 VeRL 和 BALROG 的基础上,并遵循 pytorch-a2c-ppo-acktr-gail 的成熟设计原则,引入了一系列专门优化手段,从而在任务跨度从短暂交互到数百回合时,依然能够实现稳定而高效的训练。
来自 UIUC 与 Salesforce 的研究团队提出了一套系统化方案:UserBench —— 首次将 “用户特性” 制度化,构建交互评测环境,用于专门检验大模型是否真正 “懂人”;UserRL —— 在 UserBench 及其他标准化 Gym 环境之上,搭建统一的用户交互强化学习框架,并系统探索以用户为驱动的奖励建模。
清华大学朱军教授团队,NVIDIA Deep Imagination 研究组与斯坦福 Stefano Ermon 团队联合提出了一种全新的扩散模型强化学习(RL)范式 ——Diffusion Negative-aware FineTuning (DiffusionNFT)。该方法首次突破现有 RL 对扩散模型的基本假设,直接在前向加噪过程(forward process)上进行优化