AI资讯新闻榜单内容搜索-强化学习

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 强化学习
北大彭一杰教授课题组提出RiskPO,用风险度量优化重塑大模型后训练

北大彭一杰教授课题组提出RiskPO,用风险度量优化重塑大模型后训练

北大彭一杰教授课题组提出RiskPO,用风险度量优化重塑大模型后训练

当强化学习(RL)成为大模型后训练的核心工具,「带可验证奖励的强化学习(RLVR)」凭借客观的二元反馈(如解题对错),迅速成为提升推理能力的主流范式。从数学解题到代码生成,RLVR 本应推动模型突破「已知答案采样」的局限,真正掌握深度推理逻辑 —— 但现实是,以 GRPO 为代表的主流方法正陷入「均值优化陷阱」。

来自主题: AI技术研报
5199 点击    2025-10-15 14:19
只需1/4预算,性能反超基线:阿里高德提出Tree-GRPO,高效破解智能体RL难题

只需1/4预算,性能反超基线:阿里高德提出Tree-GRPO,高效破解智能体RL难题

只需1/4预算,性能反超基线:阿里高德提出Tree-GRPO,高效破解智能体RL难题

对于大模型的强化学习已在数学推理、代码生成等静态任务中展现出不俗实力,而在需要与开放世界交互的智能体任务中,仍面临「两朵乌云」:高昂的 Rollout 预算(成千上万的 Token 与高成本的工具调用)和极其稀疏的「只看结果」的奖励信号。

来自主题: AI技术研报
6871 点击    2025-10-15 12:07
腾讯开源强化学习新算法!让智能体无需专家示范就“自学成才”,还即插即用零成本接入

腾讯开源强化学习新算法!让智能体无需专家示范就“自学成才”,还即插即用零成本接入

腾讯开源强化学习新算法!让智能体无需专家示范就“自学成才”,还即插即用零成本接入

让智能体自己摸索新方法,还模仿自己的成功经验。腾讯优图实验室开源强化学习算法——SPEAR(Self-imitation with Progressive Exploration for Agentic Reinforcement Learning)。

来自主题: AI技术研报
6297 点击    2025-10-13 15:45
刚刚,Meta风雨飘摇中发了篇重量级论文,作者几乎全是华人

刚刚,Meta风雨飘摇中发了篇重量级论文,作者几乎全是华人

刚刚,Meta风雨飘摇中发了篇重量级论文,作者几乎全是华人

风雨飘摇中的Meta,于昨天发布了一篇重量级论文,提出了一种被称作「早期经验」(Early Experience)的全新范式,让AI智能体「无师自通」,为突破强化学习瓶颈提供了一种新思路。

来自主题: AI技术研报
7881 点击    2025-10-12 11:01
开源编程模型王座易主了,谁能想到新SOTA是快手

开源编程模型王座易主了,谁能想到新SOTA是快手

开源编程模型王座易主了,谁能想到新SOTA是快手

开源编程模型王座,再度易主!来自快手的KAT-Dev-72B-Exp,在SWE-Bench认证榜单以74.6%的成绩夺得开源模型第一。KAT-Dev-72B-Exp是KAT-Coder模型的实验性强化学习版本。

来自主题: AI资讯
10113 点击    2025-10-11 15:57
任意Agent皆可强化学习!微软推出Agent Lightning框架,无需修改任何代码

任意Agent皆可强化学习!微软推出Agent Lightning框架,无需修改任何代码

任意Agent皆可强化学习!微软推出Agent Lightning框架,无需修改任何代码

AI Agent已逐渐从科幻走进现实!不仅能够执行编写代码、调用工具、进行多轮对话等复杂任务,甚至还可以进行端到端的软件开发,已经在金融、游戏、软件开发等诸多领域落地应用。

来自主题: AI技术研报
7811 点击    2025-10-11 11:44
Qwen要做机器人了:林俊旸官宣成立具身智能团队

Qwen要做机器人了:林俊旸官宣成立具身智能团队

Qwen要做机器人了:林俊旸官宣成立具身智能团队

昨天,阿里通义千问大语言模型负责人林俊旸在社交媒体上官宣,他们在 Qwen 内部组建了一个小型机器人、具身智能团队,同时表示「多模态基础模型正转变为基础智能体,这些智能体可以利用工具和记忆通过强化学习进行长程推理,它们绝对应该从虚拟世界走向物理世界」。

来自主题: AI资讯
7678 点击    2025-10-09 14:24
开源RL框架Verlog来了,专为LLM智能体打造,400回合不成问题

开源RL框架Verlog来了,专为LLM智能体打造,400回合不成问题

开源RL框架Verlog来了,专为LLM智能体打造,400回合不成问题

具体而言,Verlog 是一个多轮强化学习框架,专为具有高度可变回合(episode)长度的长时程(long-horizon) LLM-Agent 任务而设计。它在继承 VeRL 和 BALROG 的基础上,并遵循 pytorch-a2c-ppo-acktr-gail 的成熟设计原则,引入了一系列专门优化手段,从而在任务跨度从短暂交互到数百回合时,依然能够实现稳定而高效的训练。

来自主题: AI技术研报
5650 点击    2025-10-09 11:16
从「知题」到「知人」:UserRL让智能体学会「以人为本」

从「知题」到「知人」:UserRL让智能体学会「以人为本」

从「知题」到「知人」:UserRL让智能体学会「以人为本」

来自 UIUC 与 Salesforce 的研究团队提出了一套系统化方案:UserBench —— 首次将 “用户特性” 制度化,构建交互评测环境,用于专门检验大模型是否真正 “懂人”;UserRL —— 在 UserBench 及其他标准化 Gym 环境之上,搭建统一的用户交互强化学习框架,并系统探索以用户为驱动的奖励建模。

来自主题: AI技术研报
7959 点击    2025-10-08 11:45
清华、NVIDIA、斯坦福提出DiffusionNFT:基于前向过程的扩散强化学习新范式,训练效率提升25倍

清华、NVIDIA、斯坦福提出DiffusionNFT:基于前向过程的扩散强化学习新范式,训练效率提升25倍

清华、NVIDIA、斯坦福提出DiffusionNFT:基于前向过程的扩散强化学习新范式,训练效率提升25倍

清华大学朱军教授团队,NVIDIA Deep Imagination 研究组与斯坦福 Stefano Ermon 团队联合提出了一种全新的扩散模型强化学习(RL)范式 ——Diffusion Negative-aware FineTuning (DiffusionNFT)。该方法首次突破现有 RL 对扩散模型的基本假设,直接在前向加噪过程(forward process)上进行优化

来自主题: AI技术研报
8947 点击    2025-10-08 11:43