
RAG已死,2025年RAG的重点新趋势
RAG已死,2025年RAG的重点新趋势2023年至今,检索增强生成(RAG)经历了从备受瞩目到逐渐融入智能体生态的转变。尽管有人宣称“RAG已死”,但其在企业级应用中的重要性依然无可替代。RAG正从独立框架演变为智能体生态的关键子模块,2025年将在多模态、代理融合、行业定制化等领域迎来新的突破。
2023年至今,检索增强生成(RAG)经历了从备受瞩目到逐渐融入智能体生态的转变。尽管有人宣称“RAG已死”,但其在企业级应用中的重要性依然无可替代。RAG正从独立框架演变为智能体生态的关键子模块,2025年将在多模态、代理融合、行业定制化等领域迎来新的突破。
UCSD等推出Lmgame Bench标准框架,结合多款经典游戏,分模块测评模型的感知、记忆与推理表现。结果显示,不同模型在各游戏中表现迥异,凸显游戏作为AI评估工具的独特价值。
中科院自动化所提出DipLLM,这是首个在复杂策略游戏Diplomacy中基于大语言模型微调的智能体框架,仅用Cicero 1.5%的训练数据就实现超越
在推出 AI 角色扮演出海应用「Saylo」后,元象团队将目光投向了 AI 游戏领域,尝试用大模型重构“无限剧情”的叙事体验。「昭阳传」是一款以穿越题材为框架的 AI 文字冒险游戏,能实现多智能体决策与动态演绎。
JEPA-2(V-JEPA 2)是Meta最新推出的视频世界模型,采用视图嵌入预测(Joint Embedding Predictive Architecture)框架进行自监督预训练。
最近,由香港大学黄超教授团队发布的开源项目「一体化的多模态RAG框架」RAG-Anything,有效解决了传统RAG的技术局限,实现了「万物皆可RAG」的处理能力。
在经过深度思考后,我有了一个大胆的猜想:我们一直在用错误的框架理解它,大家都把它当作"更好的编程工具",但我越用越觉得,这根本不是一个编程工具,而是一个披着终端外衣的通用 AI agent。正好周末看了Anthropic 产品负责人 Michael Gerstenhaber 的最新一期访谈,
一个显而易见的事实是,技术不是 AI 应用落地的最大困境,思维与视野才是。究其本质,「新瓶装旧酒」,是业界许多团队的困局——尽管采用了前沿工具与技术,却仍沿用传统软件开发的思维框架,这种路径依赖导致大量项目折戟沉沙。
随着大模型能力的突破,“可调用工具的智能体”已经迅速从实验室概念走向应用落地,成为继大模型之后的又一爆发点。
在解决离线强化学习、图片逆问题等任务中,对生成模型的能量引导(energy guidance)是一种可控的生成方法,它构造灵活,适用于各种任务,且允许无额外训练条件生成模型。同时流匹配(flow matching)框架作为一种生成模型,近期在分子生成、图片生成等领域中已经展现出巨大潜力。