AI医生终于有了硬标尺!全球首个专病循证评测框架GAPS发布,蚂蚁联合北大王俊院士团队出品
AI医生终于有了硬标尺!全球首个专病循证评测框架GAPS发布,蚂蚁联合北大王俊院士团队出品蚂蚁健康与北京大学人民医院王俊院士团队历时6个多月,联合十余位胸外科医生共同打磨,发布了全球首个大模型专病循证能力的评测框架—— GAPS(Grounding, Adequacy, Perturbation, Safety),及其配套评测集 GAPS-NSCLC-preview。
蚂蚁健康与北京大学人民医院王俊院士团队历时6个多月,联合十余位胸外科医生共同打磨,发布了全球首个大模型专病循证能力的评测框架—— GAPS(Grounding, Adequacy, Perturbation, Safety),及其配套评测集 GAPS-NSCLC-preview。
清华大学等多所高校联合发布SR-LLM,这是一种融合大语言模型与深度强化学习的符号回归框架。它通过检索增强和语义推理,从数据中生成简洁、可解释的数学模型,显著优于现有方法。在跟车行为建模等任务中,SR-LLM不仅复现经典模型,还发现更优新模型,为机器自主科学发现开辟新路径。
近年来,大语言模型在「写得长、写得顺」这件事上进步飞快。但当任务升级到真正复杂的推理场景 —— 需要兵分多路探索、需要自我反思与相互印证、需要在多条线索之间做汇总与取舍时,传统的链式思维(Chain-of-Thought)往往就开始「吃力」:容易被早期判断带偏、发散不足、自我纠错弱,而且顺序生成的效率天然受限。
将多模态数据纳入到RAG,甚至Agent框架,是目前LLM应用领域最火热的主题之一,针对多模态数据最自然的召回方式,便是向量检索。
现有的视频编辑模型往往面临「鱼与熊掌不可兼得」的困境:专家模型精度高但依赖 Mask,通用模型虽免 Mask 但定位不准。来自悉尼科技大学和浙江大学的研究团队提出了一种全新的视频编辑框架 VideoCoF,受 LLM「思维链」启发,通过「看 - 推理 - 编辑」的流程,仅需 50k 训练数据,就在多项任务上取得了 SOTA 效果,并完美支持长视频外推!
浙江大学ReLER团队开源ContextGen框架,攻克多实例图像生成中布局与身份协同控制难题。基于Diffusion Transformer架构,通过双重注意力机制,实现布局精准锚定与身份高保真隔离,在基准测试中超越开源SOTA模型,对标GPT-4o等闭源系统,为定制化AI图像生成带来新突破。
鹏城实验室与清华大学PACMAN实验室联合发布了鹏城脑海‑2.1‑开元‑2B(PCMind‑2.1‑Kaiyuan‑2B,简称开元‑2B)模型,并以全流程开源的方式回应了这一挑战——从训练数据、数据处理框架、训练框架、完整技术报告到最终模型权重,全部开源。
现有视频生成模型往往难以兼顾「运镜」与「摄影美学」的精确控制。为此,华中科技大学、南洋理工大学、商汤科技和上海人工智能实验室团队推出了 CineCtrl。作为首个统一的视频摄影控制 V2V 框架,CineCtrl 通过解耦交叉注意力机制,摆脱了多控制信号共同控制的效果耦合问题,实现了对视频相机外参轨迹与摄影效果的独立、精细、协调控制。
谷歌正在推进一项代号为「TorchTPU」的战略行动,核心是让全球最主流的 AI 框架 PyTorch 在自家 TPU 芯片上跑得更顺畅。这项行动不仅是技术补课,更是一场商业围剿。作为 PyTorch 的掌控者,Meta 也深度参与其中,两家巨头试图联手松动英伟达的垄断地位。
在个性化视觉生成的实际应用中,通用视觉基础模型的表现往往难以满足精准需求。为实现高度定制化的生成效果,通常需对大模型进行针对性的自适应微调,但当前以 LoRA 为代表的主流方法,仍受限于定制化数据收集与冗长的优化流程,耗时耗力,难以在真实场景中广泛应用。