AI用3年时光,来了解你!首个AI Clone长期记忆基准
AI用3年时光,来了解你!首个AI Clone长期记忆基准现有AI记忆评测存在局限,如数据源单一、忽视变化本质、注入成本高等。CloneMem通过层次化生成框架构建合成人生,设计贴近真实场景的评测任务,涵盖多种问题类型。
现有AI记忆评测存在局限,如数据源单一、忽视变化本质、注入成本高等。CloneMem通过层次化生成框架构建合成人生,设计贴近真实场景的评测任务,涵盖多种问题类型。
中国团队首次在全球顶尖期刊发表“大模型+医疗”领域的相关标准研究! 作为Nature体系中专注于数字医疗的旗舰期刊,《npj Digital Medicine》(JCR影响因子15.1,中科院医学大类1区Top期刊)此次收录的CSEDB研究,首次提出了一套用于评估医疗大模型真实临床能力的系统性框架。
华东师范大学Planing Lab提出APEX框架,通过自然语言指令实现学术海报的局部可控编辑,并引入「审查—调整」机制提升编辑可靠性。
在具身智能(Embodied AI)的快速发展中,样本效率已成为制约智能体从实验室环境走向复杂开放世界的瓶颈问题。
当你在电商平台搜索“苹果”,系统会推荐“水果”还是“手机”?或者直接跳到某个品牌旗舰店?短短一个词,背后承载了完全不同的购买意图。而推荐是否精准,直接影响用户的搜索体验,也影响平台的转化效率。
近日,清华大学与星尘智能、港大、MIT 联合提出基于对比学习的隐空间动作预训练(Contrastive Latent Action Pretraining, CLAP)框架。这个框架能够将视频中提纯的运动空间与机器人的动作空间进行对齐,也就是说,机器人能够直接从视频中学习技能!
随着大模型步入规模化应用深水区,日益高昂的推理成本与延迟已成为掣肘产业落地的核心瓶颈。在 “降本增效” 的行业共识下,从量化、剪枝到模型蒸馏,各类压缩技术竞相涌现,但往往难以兼顾性能损耗与通用性。
香港大学(The University of Hong Kong)与 Adobe Research 联合发布 Self-E(Self-Evaluating Model):一种无需预训练教师蒸馏、从零开始训练的任意步数文生图框架。其目标非常直接:让同一个模型在极少步数也能生成语义清晰、结构稳定的图像,同时在 50 步等常规设置下保持顶级质量,并且随着步数增加呈现单调提升。
CAMEL AI 早前的一个开源项目 Eigent,因为和 Cowork 高度相似,作为开源平替,也跟着火了一把。 这条帖子爆火后,CAMEL AI 团队复盘了他们从 2023 年发布 CAMEL 框架开始,到 Eigent 项目的三年探索经历。
MemGovern团队 投稿 量子位 | 公众号 QbitAI 人类程序员碰到棘手bug通常会上网查询前辈经验。 当前AI虽然开始具备联网搜索能力,但仍不能很好地从网络经验中获取修复bug的能力。 让