沈向洋解读AI演进五大维度!IDEA研究院发布“万物可抓取”模型,GPU渲染器打破国外垄断
沈向洋解读AI演进五大维度!IDEA研究院发布“万物可抓取”模型,GPU渲染器打破国外垄断带领IDEA研究院(粤港澳大湾区数字经济研究院)走过第五个年头的沈向洋,新鲜分享了他用来梳理智能演进的五个维度——作为IDEA研究院创院理事长,相比给出一个技术路径路线图,他更希望提出一个识别机会的思考框架,帮助创新者在智能演进中找到技术、产品与商业的切口。
带领IDEA研究院(粤港澳大湾区数字经济研究院)走过第五个年头的沈向洋,新鲜分享了他用来梳理智能演进的五个维度——作为IDEA研究院创院理事长,相比给出一个技术路径路线图,他更希望提出一个识别机会的思考框架,帮助创新者在智能演进中找到技术、产品与商业的切口。
就在一周前,全宇宙最火爆的推理框架 SGLang 官宣支持了 Diffusion 模型,好评如潮。团队成员将原本在大语言模型推理中表现突出的高性能调度与内核优化,扩展到图像与视频扩散模型上,相较于先前的视频和图像生成框架,速度提升最高可达 57%:
专注推理任务的 Large Reasoning Models 在数学基准上不断取得突破,但也带来了一个重要问题:越想越长、越长越错。本文解读由 JHU、UNC Charlotte 等机构团队的最新工作
继轻量级强化学习(RL)框架 slime 在社区中悄然流行并支持了包括 GLM-4.6 在内的大量 Post-training 流水线与 MoE 训练任务之后,LMSYS 团队正式推出 Miles——一个专为企业级大规模 MoE 训练及生产环境工作负载设计的强化学习框架。
无需重新训练,也能一键恢复模型的安全意识了。
视频创作中,你是否曾希望复刻变成 Labubu 的特效,重现吉卜力风格化,跳出短视频平台爆火的同款舞蹈,或模仿复杂有趣的希区柯克运镜?
CUDA 代码的性能对于当今的模型训练与推理至关重要,然而手动编写优化 CUDA Kernel 需要很高的知识门槛和时间成本。与此同时,近年来 LLM 在 Code 领域获得了诸多成功。
中科大 LDS 实验室何向南、王翔团队与 Alpha Lab 张岸团队联合开源 MiniOneRec,推出生成式推荐首个完整的端到端开源框架,不仅在开源场景验证了生成式推荐 Scaling Law,还可轻量复现「OneRec」,为社区提供一站式的生成式推荐训练与研究平台。
上海人工智能实验室推出了一款革新的多模态生成理解一体化的扩散语言模型 ——Lumina-DiMOO。基于离散扩散建模(Discrete Diffusion Modeling),Lumina-DiMOO 打破了多模态任务之间的壁垒,在同一离散扩散框架下,完成从 文本→图像、图像→图像、图像→文本的全栈能力闭环。
长期以来,多模态代码生成(Multimodal Code Generation)的训练严重依赖于特定任务的监督微调(SFT)。尽管这种范式在 Chart-to-code 等单一任务上取得了显著成功 ,但其 “狭隘的训练范围” 从根本上限制了模型的泛化能力,阻碍了通用视觉代码智能(Generalized VIsioN Code Intelligence)的发展 。