「视频世界模型」新突破:AI连续生成5分钟,画面也不崩
「视频世界模型」新突破:AI连续生成5分钟,画面也不崩围绕这一挑战,上海人工智能实验室联合复旦大学、南京大学、南洋理工大学 S-Lab 等单位提出了 LongVie 2—— 一个能够生成长达 5 分钟高保真、可控视频的世界模型框架。
围绕这一挑战,上海人工智能实验室联合复旦大学、南京大学、南洋理工大学 S-Lab 等单位提出了 LongVie 2—— 一个能够生成长达 5 分钟高保真、可控视频的世界模型框架。
BMAD推出了: BMAD Method v6 for Claude Code skills。这不仅仅是一套Skills集,它是一套将敏捷开发方法论(Agile Methodology)与AI原生能力深度融合的工程框架。它将Claude Code从一个“更聪明的编辑器”转变为一支具备9种专业角色、15种标准工作流的“全栈敏捷开发团队”。
在大模型智能体(LLM Agent)落地过程中,复杂工作流的高效执行、资源冲突、跨框架兼容、分布式部署等问题一直困扰着开发者。而一款名为Maze的分布式智能体工作流框架,正以任务级精细化管理、智能资源调度、多场景部署支持等核心优势,为这些痛点提供一站式解决方案。
近日,清华朱军等团队提出了一种统一的多模态生成框架 UniCardio,在单扩散模型中同时实现了心血管信号的去噪、插补与跨模态生成,为真实场景下的人工智能辅助医疗提供了一种新的解决思路。
在电影与虚拟制作中,「看清一个人」从来不是看清某一帧。导演通过镜头运动与光线变化,让观众在不同视角、不同光照条件下逐步建立对一个角色的完整认知。然而,在当前大量 customizing video generation model 的研究中,这个最基本的事实,却往往被忽视。
蚂蚁健康与北京大学人民医院王俊院士团队历时6个多月,联合十余位胸外科医生共同打磨,发布了全球首个大模型专病循证能力的评测框架—— GAPS(Grounding, Adequacy, Perturbation, Safety),及其配套评测集 GAPS-NSCLC-preview。
清华大学等多所高校联合发布SR-LLM,这是一种融合大语言模型与深度强化学习的符号回归框架。它通过检索增强和语义推理,从数据中生成简洁、可解释的数学模型,显著优于现有方法。在跟车行为建模等任务中,SR-LLM不仅复现经典模型,还发现更优新模型,为机器自主科学发现开辟新路径。
近年来,大语言模型在「写得长、写得顺」这件事上进步飞快。但当任务升级到真正复杂的推理场景 —— 需要兵分多路探索、需要自我反思与相互印证、需要在多条线索之间做汇总与取舍时,传统的链式思维(Chain-of-Thought)往往就开始「吃力」:容易被早期判断带偏、发散不足、自我纠错弱,而且顺序生成的效率天然受限。
将多模态数据纳入到RAG,甚至Agent框架,是目前LLM应用领域最火热的主题之一,针对多模态数据最自然的召回方式,便是向量检索。
现有的视频编辑模型往往面临「鱼与熊掌不可兼得」的困境:专家模型精度高但依赖 Mask,通用模型虽免 Mask 但定位不准。来自悉尼科技大学和浙江大学的研究团队提出了一种全新的视频编辑框架 VideoCoF,受 LLM「思维链」启发,通过「看 - 推理 - 编辑」的流程,仅需 50k 训练数据,就在多项任务上取得了 SOTA 效果,并完美支持长视频外推!