苹果光速撤回RLAX论文:用了谷歌TPU和阿里Qwen,作者中还有庞若鸣
苹果光速撤回RLAX论文:用了谷歌TPU和阿里Qwen,作者中还有庞若鸣昨天,苹果一篇新论文在 arXiv 上公开然后又匆匆撤稿。原因不明。论文中,苹果揭示了他们开发的一个基于 TPU 的可扩展 RL 框架 RLAX。是的,你没有看错,不是 GPU,也不是苹果自家的 M 系列芯片,而是谷歌的 TPU!还不止如此,这篇论文的研究中还用到了亚马逊的云和中国的 Qwen 模型。
昨天,苹果一篇新论文在 arXiv 上公开然后又匆匆撤稿。原因不明。论文中,苹果揭示了他们开发的一个基于 TPU 的可扩展 RL 框架 RLAX。是的,你没有看错,不是 GPU,也不是苹果自家的 M 系列芯片,而是谷歌的 TPU!还不止如此,这篇论文的研究中还用到了亚马逊的云和中国的 Qwen 模型。
最近,来自Google Research、Google DeepMind和MIT的研究者们联合发表了一项重磅研究。结果显示:盲目增加智能体数量,在很多时候不仅没用,反而会让系统变笨、变慢、变贵。
前几天,AI 推理服务供应商 OpenRouter 发布了一份报告《State of AI》,基于平台上 60 多家提供商的 300 多个模型,100 万亿个 token 的交互数据,对 LLM 的实际应用情况进行了分析。报告中,提到了一个「灰姑娘水晶鞋效应」,特别有意思。研究者在分析用户留用数据时发现一个现象:AI 模型发布第一个月进来的用户,往往比后来进来的用户留存率更高。
昨夜,OpenAI用专家级GPT-5.2复仇Gemini 3成功!而在GPT-5.2发布前一个多小时,谷歌就率先推出全新版Gemini Deep Research Agent。谷歌对Gemini深度研究进行了重新构想,使其比以往任何时候都更加强大。
我们以为语言是语法、规则、结构。但最新的Nature研究却撕开了这层幻觉。GPT的层级结构与竟与人大脑里的「时间印记」一模一样。当浅层、中层、深层在脑中依次点亮,我们第一次看见:理解语言,也许从来不是解析,而是预测。
白铂 博士,华为 2012 实验室理论研究部主任 信息论首席科学家
今日凌晨,比OpenAI早一个小时,谷歌甩出了3个Agent大招:Deep Research Agent功能更新,并首次向开发者开放;开源新网络研究Agent基准DeepSearchQA,旨在测试Agent在网络研究任务中的全面性;推出新交互API(Interactions API)。
如果说大模型的预训练(Pre-training)是一场拼算力、拼数据的「军备竞赛」,那么测试时扩展(Test-time scaling, TTS)更像是一场在推理阶段进行的「即时战略游戏」。
有关大语言模型的理论基础,可能要出现一些改变了。
近日,师从新晋诺贝尔化学奖得主奥马尔·亚吉(Omar M. Yaghi)、目前在美国加州大学伯克利分校读博的荣自超,带领一个跨国际的研究团队,打造出名为AIRES (algorithmic iterative reticular synthesis)的机器学习指导的高通量实验平台,