让大模型不再过度思考!上海AI Lab后训练新范式重塑CoT,推理又快又好
让大模型不再过度思考!上海AI Lab后训练新范式重塑CoT,推理又快又好近日,上海人工智能实验室的研究团队提出了一种全新的后训练范式——RePro(Rectifying Process-level Reward)。这篇论文将推理的过程视为模型内部状态的优化过程,从而对如何重塑大模型的CoT提供了一个全新视角:
近日,上海人工智能实验室的研究团队提出了一种全新的后训练范式——RePro(Rectifying Process-level Reward)。这篇论文将推理的过程视为模型内部状态的优化过程,从而对如何重塑大模型的CoT提供了一个全新视角:
AGI 会不会到来?
AI不仅能回答问题,还能采访人类了。Anthropic让模型与1250名真实用户深度对话,自动写提纲、追问、做聚类分析,最后画出一张「人类情绪雷达图」。这一次,人类成了AI的研究对象。
在计算机图形学、三维视觉、虚拟人、XR 领域,SIGGRAPH 是毫无争议的 “天花板级会议”。 SIGGRAPH Asia 作为 SIGGRAPH 系列两大主会之一,每年只接收全球最顶尖研究团队的成果稿件,代表着学术与工业界的最高研究水平与最前沿技术趋势。
LLM 智能体很赞,正在成为一种解决复杂难题的强大范式。
“与AGI太过遥远的炒作相比,我非常喜欢这种 3 到 5 年的时间窗口。”“AI 现在最大的问题,已经不是不够聪明,而是太难真正落地。”这些非常务实的观点,并不是出自AI怀疑论者。相反,它出自硅谷圈内那位“工程与学术”的双修神话:
当前,AI 领域的研究者与开发者在关注 OpenAI、Google 等领先机构最新进展的同时,也将目光投向了由前 OpenAI CTO Mira Murati 创办的 Thinking Machines Lab。
南洋理工大学研究人员构建了EHRStruct基准,用于评测LLM处理结构化电子病历的能力。该基准涵盖11项核心任务,包含2200个样本,按临床场景、认知层级和功能类别组织。研究发现通用大模型优于医学专用模型,数据驱动任务表现更强,输入格式和微调方式对性能有显著影响。
在Anthropic,有一位驻场哲学家Amanda Askell专门研究如何与AI模型打交道。她不仅主导设计了Claude的性格、对齐与价值观机制,还总结出一些行之有效的提示词技巧。哲学在AI时代不仅没有落伍,反而那些通过哲学训练掌握提示词技巧的人,年薪中位数可以高达15万美元。
2025年12月12日,波士顿大学的 Andrey Fradkin 团队发布了一项令业界瞩目的研究 《The Emerging Market for Intelligence: Pricing, Supply, and Demand for LLMs》(智能的新兴市场:LLM的定价、供给与需求)。