全面战胜ReAct!斯坦福全新智能体推理框架,性能提升112.5%
全面战胜ReAct!斯坦福全新智能体推理框架,性能提升112.5%斯坦福和MIT的研究团队推出了一种新的AI智能体推理框架ReCAP,在长上下文任务中全面超越了现有的主流框架ReAct,性能提升显著。ReCAP通过独特的递归树结构和三大机制,解决了大语言模型在复杂任务中常见的目标漂移、上下文断层和成本爆炸等问题。
斯坦福和MIT的研究团队推出了一种新的AI智能体推理框架ReCAP,在长上下文任务中全面超越了现有的主流框架ReAct,性能提升显著。ReCAP通过独特的递归树结构和三大机制,解决了大语言模型在复杂任务中常见的目标漂移、上下文断层和成本爆炸等问题。
具身智能,火得有些过分, 就在昨天,清华大学宣布成立具身智能与机器人研究院。
都在聊AI会取代谁,有人说是程序员,有人说是UI设计师和插画师。但MIT最近的一项重磅研究告诉我们:我们看到的只是「冰山一角」,广大白领才是最可能被取代的第一波人。
如果AI的终极使命是拓展人类认知的边界,那么“研究”——这项系统性探索未知的核心活动,无疑是其最重要的试金石。2024年,AI Agent技术迎来突破性进展,一个名为 Deep Research(深度研究) 的方向正以前所未有的速度站上风口,成为推动“AI应用元年”的真正引擎。
在当前的情感计算研究中,存在一个显著的“断层”:我们拥有越来越精准的情感识别算法(输入端),也有了逼真的语音和面部生成技术(输出端),但连接这两端的“中间层”却鲜有人问津。机器能识别出你在愤怒,也能模拟出抱歉的语气,但它真的理解愤怒的起因吗?它能基于这种理解去调整后续的决策逻辑吗?
一般人和 ChatGPT 聊天时,往往不会在意要不要讲究礼貌。但来自爱荷华大学的一项最新研究显示:即便回答内容几乎相同,对 ChatGPT 粗鲁无礼也会让你花费更高的输出成本。
随着大型语言模型在各类任务中展现出卓越的生成与推理能力,如何将模型输出精确地追溯到其内部计算过程,已成为 AI 可解释性研究的重要方向。然而,现有方法往往计算代价高昂、难以揭示中间层的信息流动;同时,不同层面的归因(如 token、模型组件或表示子空间)通常依赖各自独立的特定方法,缺乏统一且高效的分析框架。
刚刚,Erdos 问题 #124 的一个弱化版本被证明。
我们能否像《头号玩家》那样伸手就能触摸到虚拟世界?像《阿凡达》那样植物和动物仿佛就在眼前飞舞?这不再只是科幻。11 月 26 日,在一篇最新 Nature 论文中,来自复旦大学团队和上海人工智能实验室的研究人员打造出一款名为 EyeReal 的裸眼 3D 显示器。
在大语言模型(LLM)的研究浪潮中,绝大多数工作都聚焦于优化模型的输出分布 —— 扩大模型规模、强化分布学习、优化奖励信号…… 然而,如何将这些输出分布真正转化为高质量的生成结果 —— 即解码(decoding)阶段,却没有得到足够的重视。