告别黑箱解释!首个潜变量自动解释框架 | CIKM'25
告别黑箱解释!首个潜变量自动解释框架 | CIKM'25我们被「黑箱」困住了!深度生成模型虽能创造逼真内容,但其内部运作机制如同「黑箱」,潜变量的意义难以捉摸。埃默里大学团队提出LatentExplainer框架,巧妙地将潜在变量转化为易懂解释,大幅提升模型解释质量与可靠性。
我们被「黑箱」困住了!深度生成模型虽能创造逼真内容,但其内部运作机制如同「黑箱」,潜变量的意义难以捉摸。埃默里大学团队提出LatentExplainer框架,巧妙地将潜在变量转化为易懂解释,大幅提升模型解释质量与可靠性。
随着 AI 能力不断增强,它正日益融入我们的工作与生活。我们也更愿意给予它更多「授权」,让它主动去搜集信息、分析证据、做出判断。搜索智能体正是 AI 触达人类世界迈出的重要一步。
人工智能模型的安全对齐问题,一直像悬在头顶的达摩克利斯之剑。 自对抗样本被发现以来,这一安全对齐缺陷,广泛、长期地存在与不同的深度学习模型中。
AI 检测准确率高达 98.9%,也防不住有人给真视频 P 上 Sora 水印。前段时间刷到一个视频,标题就是「中俄混血女明星回应地下室打婆婆传闻」,试问谁看了这个标题能不燃起熊熊的八卦之心?
大模型在强化学习过程中,终于知道什么经验更宝贵了! 来自上海人工智能实验室、澳门大学、南京大学和香港中文大学的研究团队,最近提出了一套经验管理和学习框架ExGRPO—— 通过科学地识别、存储、筛选和学习有价值的经验,让大模型在优化推理能力的道路上,走得更稳、更快、更远。
长期以来,扩散模型的训练通常依赖由变分自编码器(VAE)构建的低维潜空间表示。然而,VAE 的潜空间表征能力有限,难以有效支撑感知理解等核心视觉任务,同时「VAE + Diffusion」的范式在训练
很疯狂,Meta AI裁员能裁到田渊栋头上,而且是整组整组的裁。田渊栋在Meta工作已超过十年,现任FAIR研究科学家总监(Research Scientist Director),他领导开发了早于AlphaGo的围棋AI“Dark Forest”
时隔两月,Baichuan-M2 Plus重磅出世!成为业内首个循证增强的医疗大模型,幻觉要比DeepSeek-R1低3倍,可信度比肩资深临床专家。新模型将「循证医学」理念深度融入训练和推理,通过首创「六源循证范式」,模拟人类医生思维,有效辨别不同层级医学证据、评估其可靠性,并在回答中优先引用高等级证据。
当OpenAI为ChatGPT各种造势时,中国模型也在凭实力圈粉老外。最近,爱彼迎(Airbnb)联合创始人兼CEO Brian Chesky的一番公开表态掀起波澜:要知道Brian Chesky和奥特曼还是挚友,但当涉及自家应用产品整合时,他却没给老朋友留面子,直言OpenAI提供的连接工具还“没有完全准备好”。
AI科学家时代正在到来,哈佛MIT最新推出的ToolUniverse,通过一个统一平台,让AI用自然语言操作600+科学工具,推动科研自动化的全面升级,迎接科学发现新范式。