
10个小模型并联跑赢GPT-4.1!无额外训练,方法仅4步
10个小模型并联跑赢GPT-4.1!无额外训练,方法仅4步近年来,语言模型技术迅速发展,然而代表性成果如Gemini 2.5Pro和GPT-4.1,逐渐被谷歌、OpenAI等科技巨头所垄断。
近年来,语言模型技术迅速发展,然而代表性成果如Gemini 2.5Pro和GPT-4.1,逐渐被谷歌、OpenAI等科技巨头所垄断。
多模态大模型(MLLM)在静态图像上已经展现出卓越的 OCR 能力,能准确识别和理解图像中的文字内容。MME-VideoOCR 致力于系统评估并推动MLLM在视频OCR中的感知、理解和推理能力。
昨晚,终于等到了DeepSeek-R1-0528官宣。升级后的模型性能直逼o3和Gemini 2.5 Pro。如今,DeepSeek真正坐实了全球开源王者的称号,并成为了第二大AI实验室。
Google I/O 2025 结束后,Google CEO Sundar Pichai 接受了《The Verge》主编专访,这也是双方连续第三年于 I/O 后展开对谈,而今年的背景更为特殊:Gemini 模型全面更新、多模态生成工具 Veo3 登场、AI 功能深度融入 Android 与 XR 平台,Google 展现出前所未有的产品化信心。
30年码龄程序员4年都没搞定的bug,Claude Opus 4只用几个小时轻松破解了。
近年来,思维链在大模型训练和推理中愈发重要。近日,西湖大学 MAPLE 实验室齐国君教授团队首次提出扩散式「发散思维链」—— 一种面向扩散语言模型的新型大模型推理范式。该方法将反向扩散过程中的每一步中间结果都看作大模型的一个「思考」步骤,然后利用基于结果的强化学习去优化整个生成轨迹,最大化模型最终答案的正确率。
AI无处不在——从聊天机器人、推荐引擎到语音助手和ChatGPT或谷歌Gemini等工具。但在所有这些智能技术的背后,有一样东西经常被忽视:使这一切成为可能的硬件。
年仅19岁少年,自称破解了谷歌最快的语言模型Gemini Diffusion,引爆社交平台。真相扑朔迷离,但有一点毫无疑问:谷歌I/O大会的「黑马」,比GPT快10倍的速度、媲美人类程序员的代码能力,正在掀起一场NLP范式大洗牌。
在刚刚结束的 Google I/O 开发者大会中,Google 宣布上线由 Gemini 驱动的高级 AI 搜索模式 AI Mode,可以应对复杂问题,支持追问。与之前的 AI Overviews 对 AI 搜索的浅尝辄止不同,Google 终于不再死抱着“关键词+链接列表”,开始拥抱“自然语言交互+结构化答案”的“新”范式了。
普林斯顿大学与字节 Seed、北大、清华等研究团队合作提出了 MMaDA(Multimodal Large Diffusion Language Models),作为首个系统性探索扩散架构的多模态基础模型,MMaDA 通过三项核心技术突破,成功实现了文本推理、多模态理解与图像生成的统一建模。