LangChain完成 1.25 亿美元融资,投后估值 12.5 亿美元!
LangChain完成 1.25 亿美元融资,投后估值 12.5 亿美元!本周,LangChain 宣布完成 1.25 亿美元融资,投后估值 12.5 亿美元。除了宣布其独角兽地位外,该公司还发布了里程碑式更新:经过 3 年迭代,LangChain 1.0 正式登场。而且,这并非一次常规的版本升级,而是一场从零开始的重写。
本周,LangChain 宣布完成 1.25 亿美元融资,投后估值 12.5 亿美元。除了宣布其独角兽地位外,该公司还发布了里程碑式更新:经过 3 年迭代,LangChain 1.0 正式登场。而且,这并非一次常规的版本升级,而是一场从零开始的重写。
在几天前的开发者大会上,OpenAI 发布了一套面向开发者和企业的完整工具集 AgentKit。其中,可视化画布 Agent Builder 用于创建、管理和版本化多智能体工作流,通过拖拽节点的方式即可编辑工作流。
LangChain 发布了 Open SWE,这是一个完全开源的异步编码智能体,旨在在云端运行并处理复杂的软件开发任务。公司表示,Open SWE 代表了从实时“副驾驶”助手向更自主、长期运行的智能体的转变,这些智能体可以直接集成到开发人员现有的工作流程中。
当LangChain在6月23日发布那篇著名的Context Engineering博客时,IBM Research的研究者们早在10天前就已经用严格的学术实验证明了这套方法的有效性。
AI 时代,你可能听说过提示词工程、RAG、记忆等术语。但是很少有人提及上下文工程(context engineering)。
本文将介绍 22 种先进的RAG技术,灵感来源于 all-rag-techniques 仓库中的全面实现。这些实现使用 Python 库(如 NumPy、Matplotlib 和 OpenAI 的嵌入模型),避免使用 LangChain 或 FAISS 等依赖,以保持简单性和清晰度。
大模型驱动的 AI 智能体(Agent)架构最近讨论的很激烈,其中一个关键争议点在于: 多智能体到底该不该建?
在最新的 LangChain Interrupt 峰会上,AI Fund 创始人吴恩达与 LangChain 联合创始人 Harrison Chase 展开了一场对话。
当前,AI 领域呈现出一种近乎“追星式”的热情氛围,每当有新的东西发布,便迅速引发广泛关注与高度评价,仿佛技术变革即将一触即发。同时大家情绪也波动剧烈,从“危机论”到“爆发论”频繁切换。OpenAI 最近出的《A Practical guide to building AI agents》的指南,就是他们最近捧上天的“神作”。它直接被捧成了“圣经”,一时间风头无两。
你是否曾对着一个繁复的AI框架,无奈地想:"真有必要搞得这么复杂吗?"在与臃肿框架斗争一年后,Zachary Huang博士决定大刀阔斧地革新,剔除所有花里胡哨的部分。于是Pocket Flow诞生了——一个仅有100行代码的超轻量级大语言模型框架!