AI资讯新闻榜单内容搜索-RL

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: RL
「推理革命」爆发100天:DeepSeek-R1复现研究全揭秘!

「推理革命」爆发100天:DeepSeek-R1复现研究全揭秘!

「推理革命」爆发100天:DeepSeek-R1复现研究全揭秘!

本文深入梳理了围绕DeepSeek-R1展开的多项复现研究,系统解析了监督微调(SFT)、强化学习(RL)以及奖励机制、数据构建等关键技术细节。

来自主题: AI技术研报
5950 点击    2025-05-06 10:53
小米推出首个开源推理大模型 Mimo

小米推出首个开源推理大模型 Mimo

小米推出首个开源推理大模型 Mimo

今天上午,小米发布了其首个开源推理大模型-Xiaomi MiMo。通过 25 T 预训练 + MTP 加速 + 规则化 RL + Seamless Rollout,让 7 B 参数的 MiMo-7B 在数理推理和代码生成上赶超 30 B-32 B 大模型,并完整 MIT 开源全系列与工程链,给端-云一体 AI 落地提供了“以小博大”的新范例。

来自主题: AI资讯
8035 点击    2025-04-30 15:47
终端云端三连发!无问芯穹开源大模型推理加速神器,加码构建新一代端、云推理系统

终端云端三连发!无问芯穹开源大模型推理加速神器,加码构建新一代端、云推理系统

终端云端三连发!无问芯穹开源大模型推理加速神器,加码构建新一代端、云推理系统

近日,无问芯穹发起了一次推理系统开源节,连续开源了三个推理工作,包括加速端侧推理速度的 SpecEE、计算分离存储融合的 PD 半分离调度新机制 Semi-PD、低计算侵入同时通信正交的计算通信重叠新方法 FlashOverlap,为高效的推理系统设计提供多层次助力。下面让我们一起来对这三个工作展开一一解读:

来自主题: AI技术研报
7920 点击    2025-04-30 08:50
如何打造TTRL测试时强化学习+Memory的Agent,做经验时代AI的主人。| 最新

如何打造TTRL测试时强化学习+Memory的Agent,做经验时代AI的主人。| 最新

如何打造TTRL测试时强化学习+Memory的Agent,做经验时代AI的主人。| 最新

AI能像人类一样不断从经验中学习、进化,而不仅仅依赖于人工标注的数据?测试时强化学习(TTRL)与记忆系统的结合正在开启这一全新可能!

来自主题: AI技术研报
7919 点击    2025-04-29 16:24
强化学习被高估!清华上交:RL不能提升推理能力,新知识得靠蒸馏

强化学习被高估!清华上交:RL不能提升推理能力,新知识得靠蒸馏

强化学习被高估!清华上交:RL不能提升推理能力,新知识得靠蒸馏

一项来自清华大学和上海交通大学的研究颠覆了对可验证奖励强化学习(RLVR)的认知。RLVR被认为是打造自我进化大模型的关键,但实验表明,它可能只是提高了采样效率,而非真正赋予模型全新推理能力。

来自主题: AI技术研报
6109 点击    2025-04-28 16:51
首个系统性工具使用奖励范式,ToolRL刷新大模型训练思路

首个系统性工具使用奖励范式,ToolRL刷新大模型训练思路

首个系统性工具使用奖励范式,ToolRL刷新大模型训练思路

「工欲善其事,必先利其器。」 如今,人工智能正以前所未有的速度革新人类认知的边界,而工具的高效应用已成为衡量人工智能真正智慧的关键标准。

来自主题: AI技术研报
5861 点击    2025-04-28 14:53