对商户投放ROI负责,这个视频营销Agent底气从何而来?丨对话布尔向量
对商户投放ROI负责,这个视频营销Agent底气从何而来?丨对话布尔向量得益于广阔的市场空间和逐渐加码的政策支持,跨境电商近几年来一直是创业者入局的热门赛道。
得益于广阔的市场空间和逐渐加码的政策支持,跨境电商近几年来一直是创业者入局的热门赛道。
在架构层面,Milvus 2.6 大幅简化系统架构,整合多个核心组件 —— 例如将原有的 Coordinator 组件(含 RootCoord、QueryCoord、DataCoord)统一整合为 MixCoord,并将 IndexNode 与 DataNode 合并为单一组件。这些调整不仅降低了系统复杂度,更显著提升了系统的可维护性与横向扩展性。
业务团队可能说他们想要个负重一吨,时速两百公里的马车…… 现如今,借助向量检索能力,实现基于语义相似度的智能搜索,已经是所有电商、推荐、社区平台技术架构的重要一环。 作为拥有约 1.08 亿日活、 1
研究者们提出了 FDA(Model Merging with Functional Dual Anchors)——一个全新的模型融合框架。与传统的参数空间操作不同,FDA 将专家模型的参数知识投射到输入-表征空间中的合成锚点,通过功能对偶的方式实现更高效的知识整合。
众所周知,大型语言模型(LLM)的根本运作方式是预测下一个 token(词元),能够保证生成的连贯性和逻辑性,但这既是 LLM 强大能力的「灵魂」所在,也是其枷锁,将导致高昂的计算成本和响应延迟。 可
大模型一个token一个token生成,效率太低怎么办?
静态编排 VS 动态编排,谁是多agent系统最优解?通常来说,面对简单问题,采用react模式的单一agent就能搞定。可遇到复杂问题,单一agent就会立刻出现包括但不限于以下问题:串行执行效率低:无法同时完成并行的子步骤(如 “同时爬取 A、B 两个网站的数据”)。
同样是语义相似度结合时效性做rerank,指数衰减、高斯衰减、线性衰减怎么选? 假设你要在一个新闻应用中落地语义检索功能,让用户搜索雷军的投资版图盘点时,能自动关联顺为资本、小米战投等核心关联信息。
该论文提出 FractalForensics,一种基于分形水印的主动深度伪造检测与定位方法。不同于以往的水印向量,为达成伪造定位的功能,论文提出的水印以矩阵形式出现。
让模型先解释,再学Embedding! 来自UIUC、ANU、港科大、UW、TAMU等多所高校的研究人员,最新推出可解释的生成式Embedding框架——GRACE。过去几年,文本表征(Text Embedding)模型经历了从BERT到E5、GTE、LLM2Vec,Qwen-Embedding等不断演进的浪潮。这些模型将文本映射为向量空间,用于语义检索、聚类、问答匹配等任务。