FDA对偶锚点:模型知识迁移的新视角——从参数空间到输入空间
FDA对偶锚点:模型知识迁移的新视角——从参数空间到输入空间研究者们提出了 FDA(Model Merging with Functional Dual Anchors)——一个全新的模型融合框架。与传统的参数空间操作不同,FDA 将专家模型的参数知识投射到输入-表征空间中的合成锚点,通过功能对偶的方式实现更高效的知识整合。
研究者们提出了 FDA(Model Merging with Functional Dual Anchors)——一个全新的模型融合框架。与传统的参数空间操作不同,FDA 将专家模型的参数知识投射到输入-表征空间中的合成锚点,通过功能对偶的方式实现更高效的知识整合。
众所周知,大型语言模型(LLM)的根本运作方式是预测下一个 token(词元),能够保证生成的连贯性和逻辑性,但这既是 LLM 强大能力的「灵魂」所在,也是其枷锁,将导致高昂的计算成本和响应延迟。 可
大模型一个token一个token生成,效率太低怎么办?
静态编排 VS 动态编排,谁是多agent系统最优解?通常来说,面对简单问题,采用react模式的单一agent就能搞定。可遇到复杂问题,单一agent就会立刻出现包括但不限于以下问题:串行执行效率低:无法同时完成并行的子步骤(如 “同时爬取 A、B 两个网站的数据”)。
同样是语义相似度结合时效性做rerank,指数衰减、高斯衰减、线性衰减怎么选? 假设你要在一个新闻应用中落地语义检索功能,让用户搜索雷军的投资版图盘点时,能自动关联顺为资本、小米战投等核心关联信息。
该论文提出 FractalForensics,一种基于分形水印的主动深度伪造检测与定位方法。不同于以往的水印向量,为达成伪造定位的功能,论文提出的水印以矩阵形式出现。
让模型先解释,再学Embedding! 来自UIUC、ANU、港科大、UW、TAMU等多所高校的研究人员,最新推出可解释的生成式Embedding框架——GRACE。过去几年,文本表征(Text Embedding)模型经历了从BERT到E5、GTE、LLM2Vec,Qwen-Embedding等不断演进的浪潮。这些模型将文本映射为向量空间,用于语义检索、聚类、问答匹配等任务。
纽约时间 2025 年 10 月 9 日早上 9 点,Elastic (NYSE: ESTC) 在其官网宣布完成了对 Jina AI 的收购。ina AI 原 CEO 肖涵将在 Elastic 担任 VP of AI,负责 AI 方向的战略和研发。由肖涵带领的核心Jina团队将继续在向量模型、重排器、Reader 和小模型上推进搜索 AI 的发展。
几周前,我们发布了 jina-embeddings-v4 模型的 GGUF 版本,大幅降低了显存占用,提升了运行效率。不过,受限于 llama.cpp 上游版本的运行时,当时的 GGUF 模型只能当作文本向量模型使用而无法支持多模态向量的输出。
我们今天正式开源 jina-code-embeddings,一套全新的代码向量模型。包含 0.5B 和 1.5B 两种参数规模,并同步推出了 1-4 bit 的 GGUF 量化版本,方便在各类端侧硬件上部署。