
与Gemini Diffusion共振!首个扩散式「发散思维链」来了
与Gemini Diffusion共振!首个扩散式「发散思维链」来了近年来,思维链在大模型训练和推理中愈发重要。近日,西湖大学 MAPLE 实验室齐国君教授团队首次提出扩散式「发散思维链」—— 一种面向扩散语言模型的新型大模型推理范式。该方法将反向扩散过程中的每一步中间结果都看作大模型的一个「思考」步骤,然后利用基于结果的强化学习去优化整个生成轨迹,最大化模型最终答案的正确率。
近年来,思维链在大模型训练和推理中愈发重要。近日,西湖大学 MAPLE 实验室齐国君教授团队首次提出扩散式「发散思维链」—— 一种面向扩散语言模型的新型大模型推理范式。该方法将反向扩散过程中的每一步中间结果都看作大模型的一个「思考」步骤,然后利用基于结果的强化学习去优化整个生成轨迹,最大化模型最终答案的正确率。
DeepSeek-R1火了,推理模型火了,思维链(Chain-of-Thought,CoT)火了!
《Why We Think》。 这就是北大校友、前OpenAI华人VP翁荔所发布的最新万字长文—— 围绕“测试时计算”(Test-time Compute)和“思维链”(Chain-of-Thought,CoT),讨论了如何通过这些技术显著提升模型性能。
一项来自清华大学和上海交通大学的研究颠覆了对可验证奖励强化学习(RLVR)的认知。RLVR被认为是打造自我进化大模型的关键,但实验表明,它可能只是提高了采样效率,而非真正赋予模型全新推理能力。
DeepSeek-R1是近年来推理模型领域的一颗新星,它不仅突破了传统LLM的局限,还开启了全新的研究方向「思维链学」(Thoughtology)。这份长达142页的报告深入剖析了DeepSeek-R1的推理过程,揭示了其推理链的独特结构与优势,为未来推理模型的优化提供了重要启示。
近年来,大模型(Large Language Models, LLMs)在数学、编程等复杂任务上取得突破,OpenAI-o1、DeepSeek-R1 等推理大模型(Reasoning Large Language Models,RLLMs)表现尤为亮眼。但它们为何如此强大呢?
「思维链劫持」(H-CoT)的攻击方法,成功攻破了包括OpenAI o1/o3、DeepSeek-R1等在内的多款大型推理模型的安全防线。研究表明,这些模型的安全审查过程透明化反而暴露了弱点,攻击者可以利用其内部推理过程绕过安全防线,使模型拒绝率从98%骤降2%。
多模态思维链(MCoT)系统综述来了!
近段时间,推理模型 DeepSeek R1 可说是 AI 领域的头号话题。用过的都知道,该模型在输出最终回答之前,会先输出一段思维链内容。这样做可以提升最终答案的准确性。
DeepSeek-R1 等模型通过展示思维链(CoT)让用户一窥大模型的「思考过程」,然而,模型展示的思考过程真的代表了模型的内在推理机制吗?在医疗诊断、自动驾驶、法律判决等高风险领域,我们能否真正信任 AI 的决策?