
南加州大学和苹果重磅:用「心理支架」PB&J提升AI角色扮演能力,让Agent更懂用户
南加州大学和苹果重磅:用「心理支架」PB&J提升AI角色扮演能力,让Agent更懂用户照这个发展速度,不远的将来AI不仅能模仿你的行为,还能理解你为何做出这些选择。PB&J框架正是这一突破性技术的代表,它通过引入心理学中的"支架"概念,使AI能够构建合理化解释,深入理解人类决策背后的动机。
照这个发展速度,不远的将来AI不仅能模仿你的行为,还能理解你为何做出这些选择。PB&J框架正是这一突破性技术的代表,它通过引入心理学中的"支架"概念,使AI能够构建合理化解释,深入理解人类决策背后的动机。
Mixture-of-Experts(MoE)在推理时仅激活每个 token 所需的一小部分专家,凭借其稀疏激活的特点,已成为当前 LLM 中的主流架构。然而,MoE 虽然显著降低了推理时的计算量,但整体参数规模依然大于同等性能的 Dense 模型,因此在显存资源极为受限的端侧部署场景中,仍然面临较大挑战。
“活过眼前的数据治理‘脏活累活’,未来五年,这个赛道遍布机遇。”深耕半导体赛道的喆塔科技创始人兼 CEO 赵文政对这个方向充满信心,他如今正在半导体软件领域引入 AI 技术。
超越DeepSeek-R1的英伟达开源新王Llama-Nemotron,是怎么训练出来的?刚刚放出的论文,把一切细节毫无保留地全部揭秘了!
随着 Deepseek 等强推理模型的成功,强化学习在大语言模型训练中越来越重要,但在视频生成领域缺少探索。复旦大学等机构将强化学习引入到视频生成领域,经过强化学习优化的视频生成模型,生成效果更加自然流畅,更加合理。并且分别在 VDC(Video Detailed Captioning)[1] 和 VBench [2] 两大国际权威榜单中斩获第一。
你信任的AI排行榜,可能只是一场精心策划的骗局!震惊业界的Cohere Labs最新研究彻底撕破了Chatbot Arena这一所谓"黄金标准"的华丽面纱,揭露了科技巨头们如何肆无忌惮地操控评估系统、掠夺社区资源、扼杀开源创新。
大型语言模型(LLMs)在上下文知识理解方面取得了令人瞩目的成功。
研究揭示早融合架构在低计算预算下表现更优,训练效率更高。混合专家(MoE)技术让模型动态适应不同模态,显著提升性能,堪称多模态模型的秘密武器。
你以为大模型已经能轻松“上网冲浪”了?
科幻中AI自我复制失控场景,正成为现实世界严肃的研究课题。英国AISI推出RepliBench基准,分解并评估AI自主复制所需的四大核心能力。测试显示,当前AI尚不具备完全自主复制能力,但在获取资源等子任务上已展现显著进展。