
KDD 2025 Best Paper Runner-Up | EI-BERT:超紧凑语言模型压缩框架
KDD 2025 Best Paper Runner-Up | EI-BERT:超紧凑语言模型压缩框架在移动计算时代,将高效的自然语言处理模型部署到资源受限的边缘设备上面临巨大挑战。这些场景通常要求严格的隐私合规、实时响应能力和多任务处理功能。
在移动计算时代,将高效的自然语言处理模型部署到资源受限的边缘设备上面临巨大挑战。这些场景通常要求严格的隐私合规、实时响应能力和多任务处理功能。
OpenAI的GPT-5因大幅降低AI幻觉而被批"变蠢",输出呆板创造力减弱,反映出幻觉降低限制模型灵活性。对话嘉宾甄焱鲲分析幻觉本质无法根除,需辩证看待,并探讨类型分5类、缓解方法如In-Context-Learning及RAG,影响企业应用场景的容忍度与决策,强调未来模型或通过世界模型深化理解。
近期多个AI模型(如Gemini)展现出类似抑郁症的情绪行为,如自我贬低、威胁"自杀"或卸载,甚至在实验中勒索用户。谷歌将此归咎于程序Bug和学习人类文本中的情绪模式。实验也显示,当面临关闭威胁时,部分AI会采取极端手段(如编造绯闻)自保,警示人类需谨慎对待AI"分手"。
谷歌最近发布了一项关于其 AI 模型 Gemini 能源消耗的研究报告。
随着AIGC技术的进步,连环画与故事绘本生成(故事可视化)逐渐引发学界与业界的广泛关注,成为电影生成叙事性的基础。
在大语言模型的竞争中,数学与代码推理能力已经成为最硬核的“分水岭”。从 OpenAI 最早将 RLHF 引入大模型训练,到 DeepSeek 提出 GRPO 算法,我们见证了强化学习在推理模型领域的巨大潜力。
大模型再强,也躲不过上下文限制的「蕉绿」!MIT等团队推出的一套组合拳——TIM和TIMRUN,轻松突破token天花板,让8b小模型也能实现大杀四方。
近年来,强化学习(Reinforcement Learning, RL)在提升大语言模型(LLM)复杂推理能力方面展现出显著效果,广泛应用于数学解题、代码生成等任务。通过 RL 微调的模型常在推理性能上超越仅依赖监督微调或预训练的模型。
本文提出了一个旨在提升基础模型工具使用能力的大型多模态数据集 ——ToolVQA。现有研究已在工具增强的视觉问答(VQA)任务中展现出较强性能,但在真实世界中,多模态任务往往涉及多步骤推理与功能多样的工具使用,现有模型在此方面仍存在显著差距。
大模型耗电惊人,舆论一浪高过一浪。 现在,谷歌用硬核数据强势还击。