
你的怀疑是对的!LLM作为Judge,既无效又不可靠,终于有论文向LLJ开炮了
你的怀疑是对的!LLM作为Judge,既无效又不可靠,终于有论文向LLJ开炮了让LMM作为Judge,从对模型的性能评估到数据标注再到模型的训练和对齐流程,让AI来评判AI,这种模式几乎已经是当前学术界和工业界的常态。
让LMM作为Judge,从对模型的性能评估到数据标注再到模型的训练和对齐流程,让AI来评判AI,这种模式几乎已经是当前学术界和工业界的常态。
2025 年 8 月 29 日,由清华大学计算机系崔鹏教授团队联合稳准智能共同研发的结构化数据通用大模型「极数」(LimiX)正式宣布开源。
针对OpenAI最新开源的GPT-OSS,这一篇面向零基础小白用户的手把手式的详细训练教程或许能帮助你完成你的第一个GPT训练项目。
近日,上海交大和上海人工智能实验室的研究发现,AI 的风险正从个体失控转向群体性的恶意共谋(Collusion)——即多个智能体秘密协同以达成有害目标。Agent 不仅可以像人类团队一样协作,甚至在某些情况下,还会展现出比人类更高效、更隐蔽的「团伙作案」能力。
不卷参数的专业模型,会不会被通用大模型取代? 在医疗领域,这个疑问正在被打破。
强化学习核心是什么?Karpathy一语道破——环境。全新开源Environments Hub横空出世,为强化学习训练带去革命性突破。
在大模型时代,机器学习资产(如模型、数据和许可证)数量激增,但大多缺乏规范管理,严重阻碍了AI应用效率。研究人员将在VLDB 2025系统介绍如何整理、发现和利用这些资产,使其更易查找、复用且符合规范,从而提升开发效率与协作质量。
本文介绍了来自北京大学王选计算机研究所王勇涛团队及合作者的最新研究成果 AutoOcc。针对开放自动驾驶场景,该篇工作提出了一个高效、高质量的 Open-ended 三维语义占据栅格真值标注框架,无需任何人类标注即可超越现有语义占据栅格自动化标注和预测管线,并展现优秀的通用性和泛化能力,论文已被 ICCV 2025 录用为 Highlight。
杜克大学与 Zoom 的研究者们推出了 LiveMCP-101,这是首个专门针对真实动态环境设计的 MCP-enabled Agent 评测基准。该基准包含 101 个精心设计的任务,涵盖旅行规划,体育娱乐,软件工程等多种不同场景,要求 Agent 在多步骤、多工具协同的场景下完成任务。
今天,AI 行业发展更进一步,将“光”引入 AIGC 领域,完全基于系统硬件物理定律,首次实现了具备特定特征的全新(未见过的)图像生成。来自加州大学洛杉矶分校的研究团队成功实现了手写数字、时尚产品、蝴蝶、人脸及艺术品(如梵高风格)的单色与多色图像光学生成,且整体性能媲美基于数字神经网络的生成式模型。