打破数据质量鸿沟!清华腾讯Bee项目发布1500万高质量数据集,刷新MLLM全栈开源SOTA
打破数据质量鸿沟!清华腾讯Bee项目发布1500万高质量数据集,刷新MLLM全栈开源SOTA全开源多模态大模型(MLLM)的性能,长期被闭源和半开源模型“卡脖子”。
全开源多模态大模型(MLLM)的性能,长期被闭源和半开源模型“卡脖子”。
大模型「灾难性遗忘」问题或将迎来突破。近日,NeurIPS 2025收录了谷歌研究院的一篇论文,其中提出一种全新的「嵌套学习(Nested Learning)」架构。实验中基于该框架的「Hope」模型在语言建模与长上下文记忆任务中超越Transformer模型,这意味着大模型正迈向具备自我改进能力的新阶段。
众所周知,大型语言模型(LLM)的根本运作方式是预测下一个 token(词元),能够保证生成的连贯性和逻辑性,但这既是 LLM 强大能力的「灵魂」所在,也是其枷锁,将导致高昂的计算成本和响应延迟。 可
新星闪耀!28位学者获1800万美元,华人天才齐上阵。AI2050瞄准AI普惠与安全。一文速览谷歌前CEO看好的AI方向和研究项目。
机器人使用灵巧手帮人类在工厂里拧螺丝,在家里切菜做饭的一天何时可以到来?为了实现这一愿景,旨在解决灵巧操作技能 sim-to-real 难题的 DexNDM 应运而生。
微调超大参数模型,现在的“打开方式”已经大变样了: 仅需2-4 张消费级显卡(4090),就能在本地对DeepSeek 671B乃至Kimi K2 1TB这样的超大模型进行微调了。
当AI不再只是解题机器,而能与人类并肩完成严谨的科研证明,这意味着什么?
在大数据和大模型推动下,微调技术凭借成本低、效率高优势,成为应对小样本、长尾目标等复杂场景的利器。从早期全参数微调到参数高效微调(PEFT),再到如今融合多种PEFT技术的混合微调,遥感微调技术不断进化。清华大学等团队在CVMJ期刊上系统梳理了技术脉络,并指出了九个潜在研究方向,助力遥感技术在农业监测、天气预报等关键领域发挥更大作用。
来自人大和清华的研究团队发布了 DeepAnalyze,首个面向自主数据科学的 agentic LLM。DeepAnalyze引起了社区内广泛讨论,一周内收获1000多个GitHub星标、20w余次社交媒体浏览量。
这两天,Physical Intelligence(PI)联合创始人Chelsea Finn在𝕏上,对斯坦福课题组一项最新世界模型工作kuakua连续点赞。