
ACL 2025|自我怀疑还是自我纠正?清华团队揭示LLMs反思技术的暗面
ACL 2025|自我怀疑还是自我纠正?清华团队揭示LLMs反思技术的暗面反思技术因其简单性和有效性受到了广泛的研究和应用,具体表现为在大语言模型遇到障碍或困难时,提示其“再想一下”,可以显著提升性能 [1]。然而,2024 年谷歌 DeepMind 的研究人员在一项研究中指出,大模型其实分不清对与错,如果不是仅仅提示模型反思那些它回答错误的问题,这样的提示策略反而可能让模型更倾向于把回答正确的答案改错 [2]。
反思技术因其简单性和有效性受到了广泛的研究和应用,具体表现为在大语言模型遇到障碍或困难时,提示其“再想一下”,可以显著提升性能 [1]。然而,2024 年谷歌 DeepMind 的研究人员在一项研究中指出,大模型其实分不清对与错,如果不是仅仅提示模型反思那些它回答错误的问题,这样的提示策略反而可能让模型更倾向于把回答正确的答案改错 [2]。
Vevo Therapeutics(现为Tahoe)与Arc研究所,两家分别在生物技术商业转化和非营利性基础研究领域领先的机构,于2025年2月联合发布了一项里程碑式的成果:全球最大的单细胞药物扰动数据集Tahoe-100M。
您是否也曾经想过这样的场景:产品经理把idea直接扔给AI编程,然后就能得到完美能用的代码?来自德国弗劳恩霍夫研究所和杜伊斯堡-埃森大学的研究者们刚刚给我们泼了一盆冷水。
在硅谷,顶尖AI人才的身价突破天际!最近,Meta豪掷数亿美元签下最顶尖的AI研究者。硅谷这场人才战争也越演越烈。这是否值得投资?这场人才争夺背后,又隐藏着怎样的深层次问题?
近年来,视觉 - 语言 - 动作(Vision-Language-Action, VLA)模型因其出色的多模态理解与泛化能力,已成为机器人领域的重要研究方向。尽管相关技术取得了显著进展,但在实际部署中,尤其是在高频率和精细操作等任务中,VLA 模型仍受到推理速度瓶颈的严重制约。
当整个 AI 视觉生成领域都在 Transformer 架构上「卷生卷死」时,一项来自北大、北邮和华为的最新研究却反其道而行之,重新审视了深度学习中最基础、最经典的模块——3x3 卷积。
在这篇文章中,它详细展示了如何构建一个有效的多智能体研究系统,这是一个架构,其中主代理(The Lead Agent)会生成和协调子代理(Subagents),以并行方式探索复杂查询,内容涵盖系统架构、提示工程以及评估方法等。
最近,Mamba 作者之一 Albert Gu 又发新研究,他参与的一篇论文《 Dynamic Chunking for End-to-End Hierarchical Sequence Modeling 》提出了一个分层网络 H-Net,其用模型内部的动态分块过程取代 tokenization,从而自动发现和操作有意义的数据单元。
「停止研究 RL 吧,研究者更应该将精力投入到产品开发中,真正推动人工智能大规模发展的关键技术是互联网,而不是像 Transformer 这样的模型架构。」
GPT-4o引爆全球「吉卜力风格」风潮后,其核心成员——华南理工学霸Lu Liu与伯克利博士Allan Jabri——双双跳槽Meta,两人曾在OpenAI主导多模态AI研究,与奥特曼同台展示关键功能。此次挖角再次凸显OpenAI内部动荡后的人才流失危机。