
哈佛研究报告:AI正在职场制造“新贫富差距”
哈佛研究报告:AI正在职场制造“新贫富差距”9月3日消息,美国哈佛大学博士生赛义德·侯赛尼(Seyed M. Hosseini)与盖伊·莱廷格(Guy Lichtinger)近日发布研究报告,名为《生成式AI:一种偏向资历的技术变革》。该研究使用2015年第一季度至2025年第一季度美国近28.5万家企业、约6200万员工的简历和招聘数据,研究 “生成式AI采用如何影响不同资历员工的就业情况”。
9月3日消息,美国哈佛大学博士生赛义德·侯赛尼(Seyed M. Hosseini)与盖伊·莱廷格(Guy Lichtinger)近日发布研究报告,名为《生成式AI:一种偏向资历的技术变革》。该研究使用2015年第一季度至2025年第一季度美国近28.5万家企业、约6200万员工的简历和招聘数据,研究 “生成式AI采用如何影响不同资历员工的就业情况”。
这并非科幻片中的桥段,而是来自清华大学与北京航空航天大学团队的最新成果——BSC-Nav 的真实演示。通过模仿生物大脑构建、维护空间记忆的原理,研究团队让智能体拥有了前所未有的「空间感」。
本文主要介绍来自该团队的最新论文:TRKT,该任务针对弱监督动态场景图任务展开研究,发现目前的性能瓶颈在场景中目标检测的质量,因为外部预训练的目标检测器在需要考虑关系信息和时序上下文的场景图视频数据上检测结果欠佳。
LLM.265研究发现,视频编码器本身就是一种高效的大模型张量编码器。原本用于播放8K视频的现成视频编解码硬件,其实压缩AI模型数据的效率也非常高,甚至超过了许多专门为AI开发的方案。该工作已被世界微架构大会MICRO-2025正式接收,相关成果将于今年10月在首尔进行展示与讨论。
许多研究者在参加学术会议前,常常会因为制作海报所耗费的大量时间和精力而感到困扰。一张精心设计的海报是高效的学术交流媒介,但现有自动化方法普遍忽略了核心设计原则,导致生成的海报仍旧需要大量人工调整。
训练大模型时,有时让它“记性差一点”,反而更聪明! 大语言模型如果不加约束,很容易把训练数据原封不动地复刻出来。为解决这个问题,来自马里兰大学、图宾根大学和马普所的研究团队提出了一个新方法——金鱼损失(Goldfish Loss)。
近日,「AI教父」Geoffrey Hinton在一次采访中再发预警:「杀手机器人」「无人机」等致命自主武器的兴起,正在让战争变得更易发动。Hinton认为OpenAI、Anthropic等许多AI公司在AI安全方面做得都不够。他还谈到了贪婪、自负等人性弱点,对AI研究可能带来的潜在风险。
苹果又失去了四名AI研究员,其中三人是华人。
在这场以大型语言模型(LLM)为核心的 AI 浪潮中,苹果似乎一直保持着低调,很少出现在技术报道的前沿。尽管如此,时不时地,该公司也能拿出一些非常亮眼的研究成果,比如能在 iPhone 上直接运行的高效视觉语言模型 FastVLM。
全球三大高翻院之一,蒙特雷国际研究学院(MIIS)官宣,2026年7月正式停招研究生。生源不足、财务问题之下,许多人还将矛头指向了AI。如今,机翻精度高、又快又准,突然理解,什么是时代的眼泪了。