马斯克从英伟达挖人做AI游戏!第一步:研发世界模型
马斯克从英伟达挖人做AI游戏!第一步:研发世界模型马斯克的xAI也入局世界模型了!据《金融时报》(FT)报道,为了增加这场“世界模型大混战”的赢面,今年夏天,xAI已经从英伟达挖来了多名资深研究员来助阵。另一边,在悄然下场世界模型后,马斯克几天前又在𝕏上再次重申了去年定下的那个“小目标”——
马斯克的xAI也入局世界模型了!据《金融时报》(FT)报道,为了增加这场“世界模型大混战”的赢面,今年夏天,xAI已经从英伟达挖来了多名资深研究员来助阵。另一边,在悄然下场世界模型后,马斯克几天前又在𝕏上再次重申了去年定下的那个“小目标”——
构建能够在新环境中、无需任何针对性训练就能执行多样化任务的通用机器人,是机器人学领域一个长期追逐的圣杯。近年来,随着大型语言模型(LLMs)和视觉语言模型(VLMs)的飞速发展,许多研究者将希望寄托于视觉 - 语言 - 动作(VLA)模型,期望它们能复刻 LLM 和 VLM 在泛化性上取得的辉煌。
在这一背景下,清华大学与生数科技(Shengshu AI)团队围绕桥类生成模型与音频超分任务展开系统研究,先后在语音领域顶级会议ICASSP 2025和机器学习顶级会议NeurIPS 2025发表了两项连续成果:
大模型参数量飙升至千亿、万亿级,却陷入“规模越大,效率越低” 困境?中科院自动化所新研究给出破局方案——首次让MoE专家告别“静态孤立”,开启动态“组队学习”。
这不是科幻,这是 Anything 正在发生的真实故事。这家刚刚完成 1100 万美元融资、估值达到 1 亿美元的创业公司,在上线两周内就实现了 200 万美元的年度经常性收入。更让人震惊的是,他们的用户已经开始用这个平台做出真正赚钱的生意。我深入研究了这家公司后,发现他们不只是又一个 AI 编程工具,而是在彻底改变软件开发的游戏规则。
当大语言模型生成海量数据时,数据存储的难题也随之而来。对此,华盛顿大学(UW)SyFI实验室的研究者们提出了一个创新的解决方案:LLMc,即利用大型语言模型自身进行无损文本压缩的引擎。
陶哲轩与GPT-5 Pro这对搭档再大发神威,解决了一个3年无人解决的难题。而且是“不太在自己专业范围内”的问题:微分几何领域的开放问题。要知道,陶哲轩擅长的分析、数论、组合学等研究的往往是整数、函数、算子的性质。而微分几何更侧重于流形的性质,常用的工具也很不一样。
大模型安全的bug居然这么好踩??250份恶意文档就能给LLM搞小动作,不管模型大小,600M还是13B,中招率几乎没差。这是Claude母公司Anthropic最新的研究成果。
来自斯坦福大学、SambaNova Systems公司和加州大学伯克利分校的研究人员,在新论文中证明:依靠上下文工程,无需调整任何权重,模型也能不断变聪明。他们提出的方法名为智能体上下文工程ACE。
为了打破这一僵局,来自佐治亚理工学院、明尼苏达大学和哈佛大学的研究团队将目光从单纯的「成功」转向了「成功且高效」。他们推出了名为 ReCA 的集成加速框架,针对多机协作具身系统,通过软硬件协同设计跨层次优化,旨在保证不影响任务成功率的前提下,提升实时性能和系统效率,为具身智能落地奠定基础。