比 JSON 省一半钱的格式,为什么大厂不敢用?
比 JSON 省一半钱的格式,为什么大厂不敢用?最近在研究 RAG 系统优化的时候,发现了一个有意思的格式叫 TOON。全称是 Token-Oriented Object Notation,翻译过来就是面向 Token 的对象表示法。
最近在研究 RAG 系统优化的时候,发现了一个有意思的格式叫 TOON。全称是 Token-Oriented Object Notation,翻译过来就是面向 Token 的对象表示法。
真正的挑战在于,如何在错综复杂的原始视觉输入中提取抽象精髓。这便引出了本研究的主角:JEPA-WM(联合嵌入预测世界模型)。从名字也能看出来,这个模型与 Yann LeCun 的 JEPA(联合嵌入预测架构)紧密相关。事实上也确实如此,并且 Yann LeCun 本人也是该论文的作者之一。
近日,美国华盛顿大学博士生邵如琳和合作团队打造出一个名为 Deep Research Tulu(DR Tulu)的深度研究小助手。使用一次 OpenAI 的 Deep Research 服务可能需要大约 1.8 美元,而 DR Tulu 使用一次的成本却不到 0.002 美元,这几乎是千倍的效率提升,这意味着未来个人或者小团队也能负担得起高质量、高可信度的 AI 研究服务。
近年来,大模型的应用正从对话与创意写作,走向更加开放、复杂的研究型问题。尽管以检索增强生成(RAG)为代表的方法缓解了知识获取瓶颈,但其静态的 “一次检索 + 一次生成” 范式,难以支撑多步推理与长期
2026年,Scaling Law是否还能继续玩下去?对于这个问题,一篇来自DeepMind华人研究员的万字长文在社交网络火了:Scaling Law没死!算力依然就是正义,AGI才刚刚上路。
在生成式 AI 技术日新月异的背景下,合成语音的逼真度已达到真假难辨的水平,随之而来的语音欺诈与信息伪造风险也愈演愈烈。作为应对手段,语音鉴伪技术已成为信息安全领域的研究重心。
「我一直在告诉大家,如果你想买(电子)设备,现在就买。我自己要买的 iPhone 17 就已经下手了。」这是咨询公司 TrendForce 高级研究副总裁 Avril Wu 在最近接受采访时说的一句话。
视频 - 音频联合生成的研究近期在开源与闭源社区都备受关注,其中,如何生成音视频对齐的内容是研究的重点。
在电影与虚拟制作中,「看清一个人」从来不是看清某一帧。导演通过镜头运动与光线变化,让观众在不同视角、不同光照条件下逐步建立对一个角色的完整认知。然而,在当前大量 customizing video generation model 的研究中,这个最基本的事实,却往往被忽视。
作为大模型从业者或研究员的你,是否也曾为一个模型的 “长文本能力” 而兴奋,却在实际应用中发现它并没有想象中那么智能?