AI资讯新闻榜单内容搜索-自回归

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 自回归
重新定义跨模态生成的流匹配范式,VAFlow让视频「自己发声」

重新定义跨模态生成的流匹配范式,VAFlow让视频「自己发声」

重新定义跨模态生成的流匹配范式,VAFlow让视频「自己发声」

在多模态生成领域,由视频生成音频(Video-to-Audio,V2A)的任务要求模型理解视频语义,还要在时间维度上精准对齐声音与动态。早期的 V2A 方法采用自回归(Auto-Regressive)的方式将视频特征作为前缀来逐个生成音频 token,或者以掩码预测(Mask-Prediction)的方式并行地预测音频 token,逐步生成完整音频。

来自主题: AI技术研报
7583 点击    2025-10-31 15:00
NVIDIA港大MIT联合推出Fast-dLLM v2:端到端吞吐量提升2.5倍

NVIDIA港大MIT联合推出Fast-dLLM v2:端到端吞吐量提升2.5倍

NVIDIA港大MIT联合推出Fast-dLLM v2:端到端吞吐量提升2.5倍

自回归(AR)大语言模型逐 token 顺序解码的范式限制了推理效率;扩散 LLM(dLLM)以并行生成见长,但过去难以稳定跑赢自回归(AR)模型,尤其是在 KV Cache 复用、和 可变长度 支持上仍存挑战。

来自主题: AI技术研报
7515 点击    2025-10-27 16:46
NeurIPS 2025 | ARGRE框架实现高效LLM解毒:自回归奖励引导,安全对齐更快、更准、更轻

NeurIPS 2025 | ARGRE框架实现高效LLM解毒:自回归奖励引导,安全对齐更快、更准、更轻

NeurIPS 2025 | ARGRE框架实现高效LLM解毒:自回归奖励引导,安全对齐更快、更准、更轻

近期,来自北航等机构的研究提出了一种新的解决思路:自回归奖励引导表征编辑(ARGRE)框架。该方法首次在 LLM 的潜在表征空间中可视化了毒性从高到低的连续变化路径,实现了在测试阶段进行高效「解毒」。

来自主题: AI技术研报
5860 点击    2025-10-26 10:28
从掩码生成到「再掩码」训练:RemeDi让扩散语言模型学会自我纠正与反思

从掩码生成到「再掩码」训练:RemeDi让扩散语言模型学会自我纠正与反思

从掩码生成到「再掩码」训练:RemeDi让扩散语言模型学会自我纠正与反思

近期,扩散语言模型备受瞩目,提供了一种不同于自回归模型的文本生成解决方案。为使模型能够在生成过程中持续修正与优化中间结果,西湖大学 MAPLE 实验室齐国君教授团队成功训练了具有「再掩码」能力的扩散语言模型(Remasking-enabled Diffusion Language Model, RemeDi 9B)。

来自主题: AI技术研报
5774 点击    2025-10-17 09:41
Qwen3 变身扩散语言模型?不从零训练也能跑,30B参数创纪录

Qwen3 变身扩散语言模型?不从零训练也能跑,30B参数创纪录

Qwen3 变身扩散语言模型?不从零训练也能跑,30B参数创纪录

扩散语言模型(Diffusion Language Models,DLM)一直以来都令研究者颇感兴趣,因为与必须按从左到右顺序生成的自回归模型(Autoregressive, AR)不同,DLM 能实现并行生成,这在理论上可以实现更快的生成速度,也能让模型基于前后文更好地理解生成语境。

来自主题: AI技术研报
6654 点击    2025-10-15 14:00
扩散语言模型有MoE版了!蚂蚁&人大从头训练LLaDA-MoE,将完全开源

扩散语言模型有MoE版了!蚂蚁&人大从头训练LLaDA-MoE,将完全开源

扩散语言模型有MoE版了!蚂蚁&人大从头训练LLaDA-MoE,将完全开源

挑战自回归的扩散语言模型刚刚迎来了一个新里程碑:蚂蚁集团和人大联合团队用 20T 数据,从零训练出了业界首个原生 MoE 架构扩散语言模型 LLaDA-MoE。该模型虽然激活参数仅 1.4B,但性能可以比肩参数更多的自回归稠密模型 Qwen2.5-3B,而且推理速度更快。这为扩散语言模型的技术可行性提供了关键验证。

来自主题: AI技术研报
8561 点击    2025-09-15 08:30
图像编辑太慢太粗糙?全新开源自回归模型实现精准秒级修改 | 智象未来

图像编辑太慢太粗糙?全新开源自回归模型实现精准秒级修改 | 智象未来

图像编辑太慢太粗糙?全新开源自回归模型实现精准秒级修改 | 智象未来

AI图像编辑技术发展迅猛,扩散模型凭借强大的生成能力,成为行业主流。 但这类模型在实际应用中始终面临两大难题:一是“牵一发而动全身”,即便只想修改一个细节,系统也可能影响到整个画面;二是生成速度缓慢,难以满足实时交互的需求。

来自主题: AI技术研报
7011 点击    2025-09-03 10:56
dLLM的「Free Lunch」!浙大&蚂蚁利用中间结果显著提升扩散语言模型

dLLM的「Free Lunch」!浙大&蚂蚁利用中间结果显著提升扩散语言模型

dLLM的「Free Lunch」!浙大&蚂蚁利用中间结果显著提升扩散语言模型

近年来,扩散大语言模型(Diffusion Large Language Models, dLLMs)正迅速崭露头角,成为文本生成领域的一股新势力。与传统自回归(Autoregressive, AR)模型从左到右逐字生成不同,dLLM 依托迭代去噪的生成机制,不仅能够一次性生成多个 token,还能在对话、推理、创作等任务中展现出独特的优势。

来自主题: AI技术研报
8076 点击    2025-08-20 16:26
NextStep-1:一次在图像生成上自回归范式的探索

NextStep-1:一次在图像生成上自回归范式的探索

NextStep-1:一次在图像生成上自回归范式的探索

自回归模型,是 AIGC 领域一块迷人的基石。开发者们一直在探索它在视觉生成领域的边界,从经典的离散序列生成,到结合强大扩散模型的混合范式,每一步都凝聚了社区的智慧。

来自主题: AI技术研报
7491 点击    2025-08-18 17:36
开源扩散大模型首次跑赢自回归!上交大联手UCSD推出D2F,吞吐量达LLaMA3的2.5倍

开源扩散大模型首次跑赢自回归!上交大联手UCSD推出D2F,吞吐量达LLaMA3的2.5倍

开源扩散大模型首次跑赢自回归!上交大联手UCSD推出D2F,吞吐量达LLaMA3的2.5倍

在大语言模型(LLMs)领域,自回归(AR)范式长期占据主导地位,但其逐 token 生成也带来了固有的推理效率瓶颈。此前,谷歌的 Gemini Diffusion 和字节的 Seed Diffusion 以每秒千余 Tokens 的惊人吞吐量,向业界展现了扩散大语言模型(dLLMs)在推理速度上的巨大潜力。

来自主题: AI技术研报
7818 点击    2025-08-18 17:20