苹果盯上Prompt AI, 不是买产品,是要伯克利团队的[视觉大脑]
苹果盯上Prompt AI, 不是买产品,是要伯克利团队的[视觉大脑]根据外媒 CNBC 消息,苹果公司正和计算机视觉领域的初创企业 Prompt AI,推进收购事宜的 “最后阶段谈判”。
根据外媒 CNBC 消息,苹果公司正和计算机视觉领域的初创企业 Prompt AI,推进收购事宜的 “最后阶段谈判”。
8 月榜单,最值得关注的变化是 Lovart 的访问量上升,8 月访问量上涨了 68.08% 至 323w,进入榜单。Lovart,读者想必已经熟悉,是奇点星宇的另一款 AI 视觉类产品,其产品核心设计为画布+对话框+编辑工具箱,也就是用户指导 AI 干活,
2023年Meta推出SAM,随后SAM 2扩展到视频分割,性能再度突破。近日,SAM 3悄悄现身ICLR 2026盲审论文,带来全新范式——「基于概念的分割」(Segment Anything with Concepts),这预示着视觉AI正从「看见」迈向真正的「理解」。
LLaVA 于 2023 年提出,通过低成本对齐高效连接开源视觉编码器与大语言模型,使「看图 — 理解 — 对话」的多模态能力在开放生态中得以普及,明显缩小了与顶级闭源模型的差距,标志着开源多模态范式的重要里程碑。
为此,北大、UC San Diego 和 BeingBeyond 联合提出一种新的方法——Being-VL 的视觉 BPE 路线。Being-VL 的出发点是把这一步后置:先在纯自监督、无 language condition 的设定下,把图像离散化并「分词」,再与文本在同一词表、同一序列中由同一 Transformer 统一建模,从源头缩短跨模态链路并保留视觉结构先验。
构建能够在新环境中、无需任何针对性训练就能执行多样化任务的通用机器人,是机器人学领域一个长期追逐的圣杯。近年来,随着大型语言模型(LLMs)和视觉语言模型(VLMs)的飞速发展,许多研究者将希望寄托于视觉 - 语言 - 动作(VLA)模型,期望它们能复刻 LLM 和 VLM 在泛化性上取得的辉煌。
在具身智能领域,视觉 - 语言 - 动作(VLA)大模型正展现出巨大潜力,但仍面临一个关键挑战:当前主流的有监督微调(SFT)训练方式,往往让模型在遇到新环境或任务时容易出错,难以真正做到类人般的泛化
AI竟然画不好一张 “准确” 的图表?AI生图标杆如FLUX.1、GPT-Image,已经能生成媲美摄影大片的自然图像,却在柱状图、函数图这类结构化图像上频频出错,要么逻辑混乱、数据错误,要么就是标签错位。
库克和马斯克都盯上的CV公司!打开Prompt AI官网,上面介绍了这家公司的定位:一家专注于消费应用视觉智能的AI公司。这家总部位于旧金山的初创公司,其核心团队非常UC伯克利范儿:
本文作者团队来自 Insta360 影石研究院及其合作高校。目前,Insta360 正在面向世界模型、多模态大模型、生成式模型等前沿方向招聘实习生与全职算法工程师,欢迎有志于前沿 AI 研究与落地的同