打造图像编辑领域的ImageNet?苹果用Nano Banana开源了一个超大数据集
打造图像编辑领域的ImageNet?苹果用Nano Banana开源了一个超大数据集在开放研究领域里,苹果似乎一整个脱胎换骨,在纯粹的研究中经常会有一些出彩的工作。这次苹果发布的研究成果的确出人意料:他们用谷歌的 Nano-banana 模型做个了视觉编辑领域的 ImageNet。
在开放研究领域里,苹果似乎一整个脱胎换骨,在纯粹的研究中经常会有一些出彩的工作。这次苹果发布的研究成果的确出人意料:他们用谷歌的 Nano-banana 模型做个了视觉编辑领域的 ImageNet。
全新AI工具EditVerse将图片和视频编辑整合到一个框架中,让你像P图一样轻松P视频。通过统一的通用视觉语言和上下文学习能力,EditVerse解决了传统视频编辑复杂、数据稀缺的问题,还能实现罕见的「涌现能力」。在效果上,它甚至超越了商业工具Runway,预示着一个创作新纪元的到来。
在科幻作品描绘的未来,人工智能不仅仅是完成任务的工具,更是为人类提供情感陪伴与生活支持的伙伴。在实现这一愿景的探索中,多模态大模型已展现出一定潜力,可以接受视觉、语音等多模态的信息输入,结合上下文做出反馈。
长期以来,扩散模型的训练通常依赖由变分自编码器(VAE)构建的低维潜空间表示。然而,VAE 的潜空间表征能力有限,难以有效支撑感知理解等核心视觉任务,同时「VAE + Diffusion」的范式在训练
太卷了,DeepSeek-OCR刚发布不到一天,智谱就开源了自家的视觉Token方案——Glyph。既然是同台对垒,那自然得请这两天疯狂点赞DeepSeek的卡帕西来鉴赏一下:
尽管视觉语言模型(LVLMs)在图像与短视频理解中已取得显著进展,但在处理长时序、复杂语义的视频内容时仍面临巨大挑战 —— 上下文长度限制、跨模态对齐困难、计算成本高昂等问题制约着其实际应用。针对这一难题,厦门大学、罗切斯特大学与南京大学联合提出了一种轻量高效、无需微调的创新框架 ——Video-RAG。
DeepSeek最新开源的模型,已经被硅谷夸疯了!
AI新突破!DeepSeek-OCR以像素处理文本,压缩率小于1/10,基准测试领跑。开源一夜4.4k星,Karpathy技痒难耐,展望视觉输入的通用性。
近年来,大语言模型(LLMs)以及多模态大模型(MLLMs)在多种场景理解和复杂推理任务中取得突破性进展。
现有视觉语言大模型(VLMs)在多模态感知和推理任务上仍存在明显短板:1. 对图像中的细粒度视觉信息理解有限,视觉感知和推理能力未被充分激发;2. 强化学习虽能带来改进,但缺乏高质量、易扩展的 RL 数据。