
谢赛宁等新作上线,多模态理解生成大一统!思路竟与GPT-4o相似?
谢赛宁等新作上线,多模态理解生成大一统!思路竟与GPT-4o相似?来自Meta和NYU的团队,刚刚提出了一种MetaQuery新方法,让多模态模型瞬间解锁多模态生成能力!令人惊讶的是,这种方法竟然如此简单,就实现了曾被认为需要MLLM微调才能具备的能力。
来自Meta和NYU的团队,刚刚提出了一种MetaQuery新方法,让多模态模型瞬间解锁多模态生成能力!令人惊讶的是,这种方法竟然如此简单,就实现了曾被认为需要MLLM微调才能具备的能力。
LeCun谢赛宁等研究人员通过新模型Web-SSL验证了SSL在多模态任务中的潜力,证明其在扩展模型和数据规模后,能媲美甚至超越CLIP。这项研究为无语言监督的视觉预训练开辟新方向,并计划开源模型以推动社区探索。
李飞飞、谢赛宁团队又有重磅发现了:多模态LLM能够记住和回忆空间,甚至内部已经形成了局部世界模型,表现了空间意识!李飞飞兴奋表示,在2025年,空间智能的界限很可能会再次突破。
我们生活在一个感官丰富的 3D 世界中,视觉信号围绕着我们,让我们能够感知、理解和与之互动。
是什么让纽约大学著名研究者谢赛宁三连呼喊「Representation matters」?他表示:「我们可能一直都在用错误的方法训练扩散模型。」即使对生成模型而言,表征也依然有用。基于此,他们提出了 REPA,即表征对齐技术,其能让「训练扩散 Transformer 变得比你想象的更简单。」
近日,LeCun和谢赛宁等大佬,共同提出了这一种全新的SOTA MLLM——Cambrian-1。开创了以视觉为中心的方法来设计多模态模型,同时全面开源了模型权重、代码、数据集,以及详细的指令微调和评估方法。
近日,来自香港大学的Jihan Yang和纽约大学的谢赛宁等人发表了新的成果,将真实世界的地图、街景等各种信息融入Agent所在的虚拟世界,为智能体的未来赋予了无限可能。
误会了误会了,被传为“Sora作者之一”的上交大校友谢赛宁,本人紧急辟谣。
大神最新论文刚刚挂上arXiv,还是热乎的:解构扩散模型,提出一个高度简化的新架构l-DAE(小写的L)。
来自纽约大学和UC伯克利的研究团队成功捕捉到了多模态大模型在视觉理解方面存在的重大缺陷。针对这个问题,他们进一步提出了一个将DINOv2特征与CLIP特征结合的方法,有效地提升了多模态大模型的视觉功能。