
Hinton梦想的AI医生要来了!斯坦福哈佛实测:o1以78%正确率超人类
Hinton梦想的AI医生要来了!斯坦福哈佛实测:o1以78%正确率超人类Hinton梦想的AI医生要来了!斯坦福哈佛实测:o1以78%正确率超人类 新智元 新智元 2025年06月08日 12:45 北京
Hinton梦想的AI医生要来了!斯坦福哈佛实测:o1以78%正确率超人类 新智元 新智元 2025年06月08日 12:45 北京
多模态检索是信息理解与获取的关键技术,但其中的跨模态干扰问题一直是一大难题。
最近的一篇论文中,来自人大和腾讯的研究者们的研究表明,语言模型对强化学习中的奖励噪音具有鲁棒性,即使翻转相当一部分的奖励(例如,正确答案得 0 分,错误答案得 1 分),也不会显著影响下游任务的表现。
对于许多开发者来说,每月 20 美元的 Cursor 和 Copilot 已经是“无限量”好用的标配。然而,Anthropic 的 Claude Code 却是个异类。
迄今为止行业最大的开源力度。在大模型上向来低调的小红书,昨天开源了首个自研大模型。
20万次模拟实验,耗资5000美元,证实大模型在多轮对话中的表现明显低于单轮对话!一旦模型的第一轮答案出现偏差,不要试图纠正,而是新开一个对话!
图像生成、视频创作、照片精修需要找不同的模型完成也太太太太太麻烦了。 有没有这样一个“AI创作大师”,你只需要用一句话描述脑海中的灵感,它就能自动为你搭建流程、选择工具、反复修改,最终交付高质量的视觉作品呢?
近年来,大语言模型(LLMs)以及多模态大模型(MLLMs)在多种场景理解和复杂推理任务中取得突破性进展。
RNN太老,Transformer太慢?谷歌掀翻Transformer王座,用「注意力偏向+保留门」取代传统遗忘机制,重新定义了AI架构设计。全新模型Moneta、Yaad、Memora,在多个任务上全面超越Transformer。这一次,谷歌不是调参,而是换脑!
本文介绍的工作由中国人民大学高瓴人工智能学院李崇轩、文继荣教授团队与蚂蚁集团共同完成。朱峰琪、王榕甄、聂燊是中国人民大学高瓴人工智能学院的博士生,导师为李崇轩副教授。
真是屋漏偏逢连夜雨! 就在特斯拉创下单日最大跌幅,市值蒸发1500亿美元(折合人民币约10784亿元)之际,马斯克又痛失一位悍将——
在文本推理领域,以GPT-o1、DeepSeek-R1为代表的 “慢思考” 模型凭借显式反思机制,在数学和科学任务上展现出远超 “快思考” 模型(如 GPT-4o)的优势。
AI顶流Claude升级了,程序员看了都沉默:不仅能写代码能力更强了,还能连续干活7小时不出大差错!AGI真要来了?这背后到底发生了什么?现在,还有机会加入AI行业吗?如今做哪些准备,才能在未来立足?
逻辑推理是人类智能的核心能力,也是多模态大语言模型 (MLLMs) 的关键能力。随着DeepSeek-R1等具备强大推理能力的LLM的出现,研究人员开始探索如何将推理能力引入多模态大模型(MLLMs)
与OpenAI分道扬镳后,Figure 02开启日夜进厂打工模式。
能够完成多步信息检索任务,涵盖多轮推理与连续动作执行的智能体来了。通义实验室推出WebWalker(ACL2025)续作自主信息检索智能体WebDancer。
苹果最新研究揭示大推理模型(LRM)在高复杂度任务中普遍「推理崩溃」:思考路径虽长,却常在关键时刻放弃。即便给予明确算法提示,模型亦无法稳定执行,暴露推理机制的局限性。
我们拆解AI Agent的运作流程,包括感知层、决策层和执行层。
AI Agent又解锁了一个领域!清华大学牵头,与西北工业大学以及上海AI lab等机构推出了电镜领域的AI agent——AutoMat。
肾病防治迈向智能化、精准化:北大第一医院发布“肾说”大模型,医疗科技的不断创新,正在为患者提供更加高效、便捷的医疗服务。
AI模型用于工业异常检测,再次取得新SOTA!
这篇文章不只是关于 Coding Agent 的使用体验,也包括对相关关键技术,例如语言搜索、MCP 的探索和理解。Coding Agent 结合 MCP 是一种值得探索的新的自动化方式。
Nature never undertakes any change unless her interests are served by an increase in entropy. 自然界的任何变化,唯有在熵增符合其利益时方会发生——Max Planck
您有没有发现,现在市面上的AI角色扮演的Agent总有种「隔靴搔痒」的感觉?用户和AI聊天时,AI虽然能说出符合角色设定的话,但总觉得缺了点什么——就像演员在背台词,而不是真的在思考。感觉很假,也很奇怪。
近年来,AI的迅猛发展也使科研范式发生了根本性变革。
如果你面前有两个AI助手:一个能力超强却总爱“离经叛道”,另一个规规矩矩却经常“答非所问”,你会怎么选?
近期arxiv最热门论文,Qwen&清华LeapLab团队最新成果: 在强化学习训练大模型推理能力时,仅仅20%的高熵token就能撑起整个训练效果,甚至比用全部token训练还要好。
科学家用AI重构《死海古卷》时间线,震撼圈内!最新研究显示,《但以理书》《传道书》部分古卷实际成书更早,甚至揭示了圣经作者线索。AI模型Enoch结合碳14定年与笔迹分析,首创AI定年方法,大幅超越传统古文字学。
大模型推理,无疑是当下最受热议的科技话题之一。
大型语言模型 (LLM) 的发展日新月异,但实时「内化」与时俱进的知识仍然是一项挑战。如何让模型在面对复杂的知识密集型问题时,能够自主决策获取外部知识的策略?